PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 January 1; 67(Pt 1): m82–m83.
Published online 2010 December 15. doi:  10.1107/S1600536810051834
PMCID: PMC3050280

{5,5′-Dimeth­oxy-2,2′-[4,5-dimethyl-o-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}nickel(II)

Abstract

In the title Schiff base complex, [Ni(C24H22N2O4)], the NiII atom shows a square-planar geometry. The dihedral angles between the central benzene ring and the two outer rings are 4.79 (15) and 7.54 (15)°. In the crystal, mol­ecules are connected through inter­molecular C—H(...)O hydrogen bond, resulting in chains extending along the c axis. The crystal structure is further stabilized by inter­molecular π–π inter­actions, with centroid–centroid distances in the range 3.3760 (15)–3.7196 (17) Å.

Related literature

For background to Schiff base–metal complexes, see: Granovski et al. (1993 [triangle]); Blower et al. (1998 [triangle]). For related structures, see: Elmali et al. (2000 [triangle]); Kargar et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-00m82-scheme1.jpg

Experimental

Crystal data

  • [Ni(C24H22N2O4)]
  • M r = 461.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-00m82-efi1.jpg
  • a = 11.3244 (10) Å
  • b = 16.5528 (19) Å
  • c = 12.1622 (11) Å
  • β = 113.261 (6)°
  • V = 2094.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.96 mm−1
  • T = 296 K
  • 0.24 × 0.12 × 0.08 mm

Data collection

  • Stoe IPDS II Image Plate diffractometer
  • Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009 [triangle]) T min = 0.872, T max = 1.000
  • 13361 measured reflections
  • 4799 independent reflections
  • 3241 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.092
  • S = 0.98
  • 4799 reflections
  • 284 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810051834/pv2367sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051834/pv2367Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HK and AS thank PNU for financial support. RK thanks Islamic Azad University. MNT thanks GC University of Sargodha, Pakistan, for the research facilities.

supplementary crystallographic information

Comment

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structurel research (Kargar et al., 2010; Elmali et al., 2000; Blower et al., 1998).

In the title compound (Fig. 1), the geometry around the Ni(II) atom is square-planar which is coordinated by O1/O2/N1/N2 donor atoms of the tetradenate Schiff base ligand. The dihedral angles between the central benzene ring (C8–C13), and the two outer rings (C1–C6 and C15–C20) are 4.79 (15) and 7.54 (15)°. The crystal structure is furhter stabilized by intermolecular π–π interactions [Cg1···Cg2i = 3.4737 (17)Å; Cg2···Cg3i = 3.7196 (17)Å; Cg3···Cg3i = 3.3760 (15)Å; Cg1, Cg2, and Cg3 are the centroids of the Ni1/N1/C8/C13/N2, C15–C20, and Ni1/O2/C20/C15/C14/N2 rings, respectively].

Experimental

The title compound was synthesized by adding bis(4-methoxysalicylidene)-4,5-dimethyl phenylenediamine (2 mmol) to a solution of NiCl2. 6 H2O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered. Dark-red plate single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.96 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The packing of the title compound viewed down the a-axis showing 1-D infinite chains along the c -axis through the intermolecular C—H···O hydrogen bonds shown as dashed lines; H-atoms not involved in hydrogen bonding were ...

Crystal data

[Ni(C24H22N2O4)]F(000) = 960
Mr = 461.15Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2525 reflections
a = 11.3244 (10) Åθ = 2.5–29.5°
b = 16.5528 (19) ŵ = 0.96 mm1
c = 12.1622 (11) ÅT = 296 K
β = 113.261 (6)°Block, red
V = 2094.5 (4) Å30.24 × 0.12 × 0.08 mm
Z = 4

Data collection

Stoe IPDS II Image Plate diffractometer4799 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
graphiteRint = 0.070
Detector resolution: 0.15 mm pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = −14→14
Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009)k = −21→20
Tmin = 0.872, Tmax = 1.000l = −15→11
13361 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.035P)2] where P = (Fo2 + 2Fc2)/3
4799 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.52301 (3)0.15530 (2)0.57365 (3)0.03266 (10)
O10.67263 (16)0.20767 (13)0.58815 (17)0.0422 (5)
O20.52566 (17)0.11985 (13)0.43077 (16)0.0418 (5)
O31.05950 (18)0.35630 (16)0.7684 (2)0.0597 (7)
O40.4090 (3)−0.00753 (17)0.0642 (2)0.0735 (8)
N10.51974 (18)0.19646 (15)0.7148 (2)0.0344 (5)
N20.37394 (18)0.10034 (14)0.5568 (2)0.0346 (5)
C10.7477 (2)0.25092 (18)0.6784 (2)0.0334 (6)
C20.8639 (2)0.27954 (18)0.6749 (2)0.0387 (7)
H2A0.88480.26640.61040.046*
C30.9458 (2)0.32637 (19)0.7655 (3)0.0430 (7)
C40.9165 (3)0.3470 (2)0.8639 (3)0.0519 (8)
H4A0.97320.37850.92540.062*
C50.8052 (3)0.3209 (2)0.8688 (3)0.0453 (8)
H5A0.78530.33600.93310.054*
C60.7184 (2)0.27109 (18)0.7778 (2)0.0338 (6)
C70.6055 (2)0.24385 (18)0.7899 (2)0.0357 (6)
H7A0.59170.26120.85660.043*
C80.4111 (2)0.16962 (18)0.7365 (2)0.0357 (7)
C90.3808 (3)0.1909 (2)0.8325 (3)0.0446 (7)
H9A0.43430.22640.88990.053*
C100.2727 (3)0.1607 (2)0.8449 (3)0.0483 (7)
C110.1927 (3)0.1070 (2)0.7575 (3)0.0482 (8)
C120.2238 (2)0.0857 (2)0.6625 (3)0.0453 (7)
H12A0.17070.05010.60510.054*
C130.3324 (2)0.11598 (18)0.6505 (3)0.0363 (6)
C140.3126 (2)0.04987 (18)0.4708 (3)0.0400 (7)
H14A0.24370.02210.47620.048*
C150.3415 (2)0.03359 (18)0.3702 (3)0.0371 (6)
C160.2637 (3)−0.0209 (2)0.2821 (3)0.0495 (8)
H16A0.1975−0.04720.29460.059*
C170.2811 (3)−0.0367 (2)0.1799 (3)0.0498 (8)
H17A0.2278−0.07280.12340.060*
C180.3811 (3)0.0025 (2)0.1622 (3)0.0475 (8)
C190.4612 (3)0.0550 (2)0.2466 (3)0.0462 (7)
H19A0.52770.08000.23310.055*
C200.4444 (2)0.07135 (18)0.3526 (2)0.0354 (6)
C211.0950 (3)0.3371 (3)0.6713 (3)0.0656 (10)
H21A1.17760.36010.68570.098*
H21B1.03220.35870.59850.098*
H21C1.09900.27950.66440.098*
C220.3392 (4)−0.0663 (3)−0.0224 (3)0.0770 (12)
H22A0.3711−0.0680−0.08470.116*
H22B0.2497−0.0522−0.05600.116*
H22C0.3499−0.11840.01510.116*
C230.2426 (3)0.1856 (3)0.9503 (3)0.0672 (11)
H23A0.30580.22370.99840.101*
H23B0.24390.13880.99750.101*
H23C0.15900.21000.92210.101*
C240.0704 (3)0.0742 (3)0.7637 (4)0.0730 (12)
H24A0.03510.03300.70410.110*
H24B0.00920.11720.74930.110*
H24C0.08950.05170.84160.110*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.03026 (15)0.0399 (2)0.03049 (16)−0.00596 (16)0.01484 (12)−0.00084 (19)
O10.0399 (9)0.0571 (14)0.0355 (11)−0.0172 (9)0.0211 (9)−0.0088 (10)
O20.0435 (10)0.0532 (13)0.0317 (10)−0.0148 (9)0.0181 (9)−0.0081 (10)
O30.0461 (11)0.0767 (19)0.0631 (14)−0.0283 (11)0.0289 (10)−0.0166 (13)
O40.0989 (18)0.078 (2)0.0524 (15)−0.0325 (15)0.0394 (14)−0.0308 (14)
N10.0332 (10)0.0406 (14)0.0335 (12)−0.0018 (10)0.0177 (10)−0.0010 (11)
N20.0293 (10)0.0376 (14)0.0384 (13)−0.0007 (9)0.0150 (10)0.0018 (11)
C10.0312 (12)0.0367 (17)0.0318 (14)−0.0023 (11)0.0122 (11)0.0044 (12)
C20.0369 (13)0.0477 (19)0.0356 (15)−0.0073 (12)0.0185 (12)−0.0032 (14)
C30.0364 (13)0.047 (2)0.0480 (17)−0.0099 (12)0.0192 (13)−0.0003 (14)
C40.0483 (15)0.064 (2)0.0419 (16)−0.0203 (16)0.0158 (13)−0.0151 (18)
C50.0468 (15)0.056 (2)0.0392 (16)−0.0082 (13)0.0231 (13)−0.0091 (15)
C60.0329 (12)0.0392 (17)0.0305 (14)−0.0028 (11)0.0138 (11)0.0018 (13)
C70.0395 (13)0.0392 (17)0.0344 (14)0.0010 (12)0.0209 (12)−0.0004 (13)
C80.0338 (12)0.0397 (19)0.0392 (15)−0.0021 (11)0.0203 (12)0.0029 (13)
C90.0430 (15)0.0514 (19)0.0482 (18)−0.0059 (13)0.0274 (14)−0.0064 (15)
C100.0500 (15)0.050 (2)0.0586 (19)0.0025 (15)0.0364 (15)0.0001 (18)
C110.0424 (15)0.047 (2)0.069 (2)0.0002 (13)0.0370 (16)0.0050 (17)
C120.0353 (13)0.0456 (19)0.060 (2)−0.0073 (13)0.0243 (14)−0.0015 (16)
C130.0322 (12)0.0386 (17)0.0430 (16)0.0018 (11)0.0201 (12)0.0054 (14)
C140.0300 (12)0.0404 (18)0.0510 (17)−0.0052 (12)0.0176 (12)−0.0004 (15)
C150.0337 (13)0.0353 (17)0.0409 (16)0.0015 (11)0.0135 (12)−0.0026 (13)
C160.0381 (14)0.048 (2)0.060 (2)−0.0085 (13)0.0173 (15)−0.0112 (17)
C170.0460 (16)0.046 (2)0.0474 (19)−0.0041 (14)0.0079 (14)−0.0147 (16)
C180.0559 (17)0.045 (2)0.0410 (18)−0.0002 (15)0.0185 (15)−0.0089 (15)
C190.0530 (16)0.048 (2)0.0401 (16)−0.0102 (15)0.0214 (14)−0.0059 (15)
C200.0377 (13)0.0348 (17)0.0302 (14)0.0000 (11)0.0097 (12)−0.0008 (12)
C210.0509 (16)0.086 (3)0.071 (2)−0.0267 (19)0.0368 (17)−0.017 (2)
C220.094 (3)0.081 (3)0.053 (2)−0.019 (2)0.026 (2)−0.029 (2)
C230.069 (2)0.082 (3)0.075 (3)−0.0068 (19)0.054 (2)−0.009 (2)
C240.0556 (19)0.082 (3)0.103 (3)−0.0189 (19)0.055 (2)−0.010 (2)

Geometric parameters (Å, °)

Ni1—O21.8456 (19)C10—C111.407 (5)
Ni1—O11.8485 (17)C10—C231.508 (4)
Ni1—N21.856 (2)C11—C121.380 (4)
Ni1—N11.861 (2)C11—C241.517 (4)
O1—C11.305 (3)C12—C131.388 (3)
O2—C201.306 (3)C12—H12A0.9300
O3—C31.367 (3)C14—C151.411 (4)
O3—C211.425 (4)C14—H14A0.9300
O4—C181.358 (4)C15—C201.411 (4)
O4—C221.422 (4)C15—C161.412 (4)
N1—C71.301 (3)C16—C171.358 (4)
N1—C81.428 (3)C16—H16A0.9300
N2—C141.304 (4)C17—C181.395 (4)
N2—C131.417 (3)C17—H17A0.9300
C1—C61.414 (4)C18—C191.376 (4)
C1—C21.416 (3)C19—C201.402 (4)
C2—C31.367 (4)C19—H19A0.9300
C2—H2A0.9300C21—H21A0.9600
C3—C41.404 (4)C21—H21B0.9600
C4—C51.356 (4)C21—H21C0.9600
C4—H4A0.9300C22—H22A0.9600
C5—C61.417 (4)C22—H22B0.9600
C5—H5A0.9300C22—H22C0.9600
C6—C71.417 (3)C23—H23A0.9600
C7—H7A0.9300C23—H23B0.9600
C8—C91.386 (4)C23—H23C0.9600
C8—C131.393 (4)C24—H24A0.9600
C9—C101.384 (4)C24—H24B0.9600
C9—H9A0.9300C24—H24C0.9600
Cg1···Cg2i3.4737 (17)Cg3···Cg3i3.3760 (15)
Cg2···Cg3i3.7196 (17)
O2—Ni1—O183.33 (8)C11—C12—H12A119.1
O2—Ni1—N295.32 (9)C13—C12—H12A119.1
O1—Ni1—N2178.38 (10)C12—C13—C8118.8 (3)
O2—Ni1—N1177.06 (10)C12—C13—N2127.4 (3)
O1—Ni1—N195.26 (9)C8—C13—N2113.8 (2)
N2—Ni1—N186.13 (10)N2—C14—C15125.9 (2)
C1—O1—Ni1127.25 (17)N2—C14—H14A117.1
C20—O2—Ni1127.75 (17)C15—C14—H14A117.1
C3—O3—C21117.9 (2)C14—C15—C20122.3 (2)
C18—O4—C22118.7 (3)C14—C15—C16119.4 (3)
C7—N1—C8121.1 (2)C20—C15—C16118.2 (3)
C7—N1—Ni1125.95 (18)C17—C16—C15123.1 (3)
C8—N1—Ni1112.92 (17)C17—C16—H16A118.5
C14—N2—C13121.4 (2)C15—C16—H16A118.5
C14—N2—Ni1125.10 (19)C16—C17—C18118.1 (3)
C13—N2—Ni1113.45 (18)C16—C17—H17A121.0
O1—C1—C6123.7 (2)C18—C17—H17A121.0
O1—C1—C2117.5 (2)O4—C18—C19114.7 (3)
C6—C1—C2118.8 (2)O4—C18—C17124.2 (3)
C3—C2—C1120.5 (3)C19—C18—C17121.0 (3)
C3—C2—H2A119.7C18—C19—C20121.2 (3)
C1—C2—H2A119.7C18—C19—H19A119.4
C2—C3—O3123.9 (3)C20—C19—H19A119.4
C2—C3—C4120.8 (2)O2—C20—C19118.4 (3)
O3—C3—C4115.3 (3)O2—C20—C15123.3 (2)
C5—C4—C3119.8 (3)C19—C20—C15118.3 (3)
C5—C4—H4A120.1O3—C21—H21A109.5
C3—C4—H4A120.1O3—C21—H21B109.5
C4—C5—C6121.4 (3)H21A—C21—H21B109.5
C4—C5—H5A119.3O3—C21—H21C109.5
C6—C5—H5A119.3H21A—C21—H21C109.5
C1—C6—C7122.6 (2)H21B—C21—H21C109.5
C1—C6—C5118.7 (2)O4—C22—H22A109.5
C7—C6—C5118.7 (3)O4—C22—H22B109.5
N1—C7—C6125.0 (3)H22A—C22—H22B109.5
N1—C7—H7A117.5O4—C22—H22C109.5
C6—C7—H7A117.5H22A—C22—H22C109.5
C9—C8—C13119.8 (2)H22B—C22—H22C109.5
C9—C8—N1126.5 (3)C10—C23—H23A109.5
C13—C8—N1113.7 (2)C10—C23—H23B109.5
C10—C9—C8121.6 (3)H23A—C23—H23B109.5
C10—C9—H9A119.2C10—C23—H23C109.5
C8—C9—H9A119.2H23A—C23—H23C109.5
C9—C10—C11118.6 (3)H23B—C23—H23C109.5
C9—C10—C23120.0 (3)C11—C24—H24A109.5
C11—C10—C23121.3 (3)C11—C24—H24B109.5
C12—C11—C10119.5 (3)H24A—C24—H24B109.5
C12—C11—C24119.3 (3)C11—C24—H24C109.5
C10—C11—C24121.1 (3)H24A—C24—H24C109.5
C11—C12—C13121.7 (3)H24B—C24—H24C109.5
O2—Ni1—O1—C1−177.0 (3)C8—C9—C10—C110.1 (5)
N1—Ni1—O1—C15.6 (3)C8—C9—C10—C23−179.7 (3)
O1—Ni1—O2—C20178.4 (2)C9—C10—C11—C120.2 (5)
N2—Ni1—O2—C20−0.7 (2)C23—C10—C11—C12−179.9 (3)
O1—Ni1—N1—C7−1.8 (3)C9—C10—C11—C24−177.7 (3)
N2—Ni1—N1—C7177.3 (3)C23—C10—C11—C242.1 (5)
O1—Ni1—N1—C8179.12 (19)C10—C11—C12—C13−0.1 (5)
N2—Ni1—N1—C8−1.71 (19)C24—C11—C12—C13177.9 (3)
O2—Ni1—N2—C145.4 (2)C11—C12—C13—C8−0.4 (5)
N1—Ni1—N2—C14−177.1 (2)C11—C12—C13—N2−178.7 (3)
O2—Ni1—N2—C13−176.57 (19)C9—C8—C13—C120.7 (4)
N1—Ni1—N2—C130.86 (19)N1—C8—C13—C12179.9 (2)
Ni1—O1—C1—C6−6.3 (4)C9—C8—C13—N2179.3 (3)
Ni1—O1—C1—C2174.40 (19)N1—C8—C13—N2−1.6 (4)
O1—C1—C2—C3178.8 (3)C14—N2—C13—C12−3.3 (5)
C6—C1—C2—C3−0.5 (4)Ni1—N2—C13—C12178.6 (2)
C1—C2—C3—O3−179.9 (3)C14—N2—C13—C8178.3 (3)
C1—C2—C3—C40.0 (5)Ni1—N2—C13—C80.2 (3)
C21—O3—C3—C2−0.3 (5)C13—N2—C14—C15176.1 (3)
C21—O3—C3—C4179.7 (3)Ni1—N2—C14—C15−6.0 (4)
C2—C3—C4—C5−0.6 (5)N2—C14—C15—C200.5 (5)
O3—C3—C4—C5179.4 (3)N2—C14—C15—C16−178.0 (3)
C3—C4—C5—C61.7 (5)C14—C15—C16—C17176.6 (3)
O1—C1—C6—C71.9 (5)C20—C15—C16—C17−2.0 (5)
C2—C1—C6—C7−178.8 (3)C15—C16—C17—C180.4 (5)
O1—C1—C6—C5−177.8 (3)C22—O4—C18—C19174.1 (3)
C2—C1—C6—C51.6 (4)C22—O4—C18—C17−5.2 (5)
C4—C5—C6—C1−2.2 (5)C16—C17—C18—O4−179.8 (3)
C4—C5—C6—C7178.2 (3)C16—C17—C18—C191.0 (5)
C8—N1—C7—C6177.6 (3)O4—C18—C19—C20−179.9 (3)
Ni1—N1—C7—C6−1.4 (4)C17—C18—C19—C20−0.7 (5)
C1—C6—C7—N12.1 (5)Ni1—O2—C20—C19177.2 (2)
C5—C6—C7—N1−178.3 (3)Ni1—O2—C20—C15−3.8 (4)
C7—N1—C8—C92.2 (5)C18—C19—C20—O2178.1 (3)
Ni1—N1—C8—C9−178.7 (3)C18—C19—C20—C15−1.0 (5)
C7—N1—C8—C13−176.9 (3)C14—C15—C20—O24.7 (4)
Ni1—N1—C8—C132.2 (3)C16—C15—C20—O2−176.8 (3)
C13—C8—C9—C10−0.6 (5)C14—C15—C20—C19−176.3 (3)
N1—C8—C9—C10−179.6 (3)C16—C15—C20—C192.2 (4)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···O2ii0.932.413.173 (3)140

Symmetry codes: (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2367).

References

  • Blower, P. J. (1998). Transition Met. Chem. 23, 109–112.
  • Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. [PubMed]
  • Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  • Kargar, H., Kia, R., Tahir, M. N. & Sahraei, A. (2010). Acta Cryst. E66, m1246. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2005). X-AREA Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography