PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 January 1; 67(Pt 1): o66.
Published online 2010 December 11. doi:  10.1107/S160053681005083X
PMCID: PMC3050241

4,4′-(1,8-Naphthalene-1,8-di­yl)dibenzonitrile

Abstract

In the title mol­ecule, C24H14N2, the exterior C—C—C angle of the naphthalene ring system involving the two phenyl-substituted C atoms is 126.06 (11)° and the dihedral angles between the mean plane of the naphthalene ring system and those of the benzene rings are 66.63 (5) and 67.89 (5)°. In the crystal, mol­ecules are linked into a ladders by four weak C—H(...)π inter­actions.

Related literature

For the structure of the related compound 4-(1-napht­yl)benzonitrile, see: Lima et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-00o66-scheme1.jpg

Experimental

Crystal data

  • C24H14N2
  • M r = 330.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-00o66-efi1.jpg
  • a = 17.0872 (9) Å
  • b = 8.2997 (4) Å
  • c = 24.3656 (13) Å
  • β = 93.795 (2)°
  • V = 3447.9 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 150 K
  • 0.40 × 0.30 × 0.02 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.971, T max = 0.999
  • 11422 measured reflections
  • 4634 independent reflections
  • 3482 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.131
  • S = 1.04
  • 4634 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and OSCAIL (McArdle et al., 2004 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681005083X/lh5183sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005083X/lh5183Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

CFL thanks the FCT and the European Social Fund (ESF) under the third Community Support Framework (CSF) for the award of a PhD Research Grant (SRFH/BD/29394/2006).

supplementary crystallographic information

Comment

The exterior C1-C9-C8 angle of the naphthalene ring in C24H14N2 is significantly larger, 126.106 (11)°, than that found in the two independent molecules of the single phenyl substituted compound, 4-(1-naphtyl)benzonitrile (Lima et al., 2010), with values of 123.17 (11)° and 123.21 (10)° as are the angles C9—C1—C11 and C9—C8—C81, 124.93 (10)° and 124.79 (11)° as compared to the values for the single phenyl susbstituent of 121.463 (11)° and 121.47 (10)°.

The dihedral angles between the mean planes of the naphthalene ring and the C11—C16 ring and the C81—C86 rings are 66.33 (5)° and 67.89 (5)° respectively. These angles are significantly larger than those found for the single phenyl substituent in the two molecules of 4-(1-naphtyl)benzonitrile in which the naphthalene rings form dihedral angles of 60.28 (3)° and 60.79 (3)° for molecules 1 and 2 respectively.

C12 and C82 are linked via C—H···.π interactions to the centres-of-gravity of the rings C8—C10 and C1—C10 at (3/2 - x,3/2 - y,1 - y) respectively and C16 and C86 are linked via C—H···π interactions to the centres-of-gravity of the rings C8—C10 and C1—C10 at (1 - x,1 - y,1 - y) respectively, Table 1. The molecules are thus linked into ladders with the molecules being stacked alternately head-to-tail as the rungs with the cyano groups and atoms C4 and C5 of the naphthalene groups pointing outwards. Alternate ladders run parallel to (110) and (-110). There is an solvent accessible void of 47 Å3 in the structure lying between the ladders. These contains no residual electron density. There is no π···π stacking nor are there C—H···N hydrogen bonds.

Refinement

H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, with Uiso = 1.2Ueq(C). The positions of the H atoms were calculated and checked on a difference map during the refinement.

Figures

Fig. 1.
The molecular structure of the title compound with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Stereoview of the ladders formed by C—H···π interactions (dashed lines). Hydrogen atoms not involved in the motifs are not included.

Crystal data

C24H14N2F(000) = 1376
Mr = 330.37Dx = 1.273 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 205 reflections
a = 17.0872 (9) Åθ = 7.4–29.2°
b = 8.2997 (4) ŵ = 0.08 mm1
c = 24.3656 (13) ÅT = 150 K
β = 93.795 (2)°Plate, white
V = 3447.9 (3) Å30.40 × 0.30 × 0.02 mm
Z = 8

Data collection

Bruker SMART APEX diffractometer4634 independent reflections
Radiation source: fine-focus sealed tube3482 reflections with I > 2σ(I)
graphiteRint = 0.031
Detector resolution: 8.33 pixels mm-1θmax = 29.2°, θmin = 3.0°
ω scansh = −22→23
Absorption correction: multi-scan (SADABS; Bruker, 2004)k = −11→6
Tmin = 0.971, Tmax = 0.999l = −24→33
11422 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0635P)2 + 1.3141P] where P = (Fo2 + 2Fc2)/3
4634 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N140.69235 (9)0.27151 (19)0.76246 (5)0.0427 (4)
N840.60515 (8)0.8449 (2)0.77878 (5)0.0449 (4)
C10.64595 (7)0.48335 (15)0.49000 (5)0.0182 (3)
C20.66041 (7)0.35609 (16)0.45575 (5)0.0216 (3)
H20.67530.25530.47170.026*
C30.65391 (8)0.36994 (17)0.39800 (5)0.0237 (3)
H30.66440.28000.37550.028*
C40.63235 (8)0.51393 (17)0.37489 (5)0.0228 (3)
H40.62770.52380.33600.027*
C50.59492 (7)0.79704 (17)0.38171 (5)0.0225 (3)
H50.59090.80290.34270.027*
C60.57980 (8)0.93033 (17)0.41173 (5)0.0238 (3)
H60.56551.02880.39390.029*
C70.58549 (7)0.92080 (16)0.46957 (5)0.0219 (3)
H70.57551.01480.49020.026*
C80.60507 (7)0.77995 (15)0.49740 (5)0.0183 (3)
C90.62271 (7)0.63717 (15)0.46689 (5)0.0173 (3)
C100.61666 (7)0.64945 (16)0.40782 (5)0.0192 (3)
C110.65558 (7)0.44683 (15)0.55012 (5)0.0182 (3)
C120.71645 (7)0.51380 (15)0.58382 (5)0.0199 (3)
H120.75170.58760.56870.024*
C130.72607 (7)0.47384 (16)0.63911 (5)0.0220 (3)
H130.76700.52120.66200.026*
C140.67492 (8)0.36320 (16)0.66076 (5)0.0226 (3)
C150.61429 (8)0.29422 (16)0.62760 (6)0.0235 (3)
H150.57950.21940.64270.028*
C160.60519 (8)0.33568 (16)0.57243 (5)0.0222 (3)
H160.56430.28800.54960.027*
C810.60545 (7)0.78930 (15)0.55880 (5)0.0180 (3)
C820.66047 (8)0.88695 (16)0.58767 (5)0.0213 (3)
H820.69780.94480.56820.026*
C830.66135 (8)0.90069 (16)0.64442 (5)0.0227 (3)
H830.69970.96560.66380.027*
C840.60552 (8)0.81858 (17)0.67278 (5)0.0227 (3)
C850.54901 (7)0.72304 (17)0.64435 (5)0.0228 (3)
H850.51060.66800.66370.027*
C860.54928 (7)0.70913 (16)0.58781 (5)0.0201 (3)
H860.51080.64430.56850.024*
C1410.68499 (8)0.31483 (19)0.71759 (6)0.0287 (3)
C8410.60570 (8)0.83269 (19)0.73182 (6)0.0297 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N140.0462 (8)0.0557 (10)0.0262 (7)−0.0037 (7)0.0020 (6)0.0074 (6)
N840.0411 (8)0.0708 (11)0.0227 (7)−0.0121 (7)0.0020 (6)0.0000 (7)
C10.0156 (5)0.0202 (6)0.0184 (6)−0.0023 (5)−0.0006 (4)−0.0009 (5)
C20.0210 (6)0.0199 (7)0.0239 (7)0.0000 (5)0.0007 (5)−0.0011 (5)
C30.0229 (6)0.0258 (7)0.0227 (7)−0.0014 (5)0.0042 (5)−0.0083 (5)
C40.0214 (6)0.0298 (7)0.0173 (6)−0.0028 (5)0.0018 (5)−0.0033 (5)
C50.0210 (6)0.0294 (7)0.0169 (6)−0.0014 (5)0.0001 (5)0.0039 (5)
C60.0216 (6)0.0244 (7)0.0253 (7)0.0025 (5)0.0020 (5)0.0061 (5)
C70.0202 (6)0.0210 (7)0.0247 (7)0.0007 (5)0.0036 (5)−0.0012 (5)
C80.0157 (5)0.0221 (7)0.0171 (6)−0.0008 (5)0.0023 (4)−0.0016 (5)
C90.0142 (5)0.0215 (6)0.0161 (6)−0.0009 (4)0.0004 (4)−0.0008 (5)
C100.0155 (5)0.0248 (7)0.0173 (6)−0.0027 (5)0.0013 (4)−0.0001 (5)
C110.0188 (6)0.0175 (6)0.0182 (6)0.0033 (5)0.0014 (4)−0.0010 (5)
C120.0182 (6)0.0204 (6)0.0209 (6)0.0007 (5)0.0006 (5)0.0011 (5)
C130.0202 (6)0.0240 (7)0.0211 (6)0.0016 (5)−0.0025 (5)−0.0017 (5)
C140.0256 (6)0.0235 (7)0.0188 (6)0.0043 (5)0.0021 (5)0.0009 (5)
C150.0244 (6)0.0213 (7)0.0249 (7)−0.0006 (5)0.0033 (5)0.0032 (5)
C160.0213 (6)0.0207 (7)0.0241 (7)−0.0026 (5)−0.0006 (5)−0.0007 (5)
C810.0193 (6)0.0170 (6)0.0179 (6)0.0034 (5)0.0023 (4)−0.0013 (5)
C820.0235 (6)0.0202 (6)0.0206 (6)−0.0011 (5)0.0033 (5)0.0001 (5)
C830.0247 (6)0.0213 (7)0.0217 (6)−0.0016 (5)−0.0009 (5)−0.0022 (5)
C840.0250 (6)0.0253 (7)0.0179 (6)0.0026 (5)0.0022 (5)0.0008 (5)
C850.0202 (6)0.0264 (7)0.0222 (6)0.0006 (5)0.0041 (5)0.0017 (5)
C860.0179 (6)0.0214 (7)0.0212 (6)−0.0001 (5)0.0020 (5)−0.0025 (5)
C1410.0290 (7)0.0336 (8)0.0235 (7)−0.0007 (6)0.0019 (5)0.0020 (6)
C8410.0277 (7)0.0384 (9)0.0229 (7)−0.0045 (6)0.0011 (5)0.0005 (6)

Geometric parameters (Å, °)

N14—C1411.1499 (19)C11—C121.3971 (17)
N84—C8411.1496 (19)C12—C131.3867 (17)
C1—C21.3785 (18)C12—H120.9500
C1—C91.4405 (17)C13—C141.3951 (19)
C1—C111.4943 (17)C13—H130.9500
C2—C31.4088 (18)C14—C151.3938 (18)
C2—H20.9500C14—C1411.4411 (18)
C3—C41.3614 (19)C15—C161.3864 (18)
C3—H30.9500C15—H150.9500
C4—C101.4176 (18)C16—H160.9500
C4—H40.9500C81—C821.3957 (17)
C5—C61.3603 (19)C81—C861.3976 (18)
C5—C101.4185 (18)C82—C831.3864 (18)
C5—H50.9500C82—H820.9500
C6—C71.4085 (18)C83—C841.3926 (19)
C6—H60.9500C83—H830.9500
C7—C81.3814 (18)C84—C851.3973 (18)
C7—H70.9500C84—C8411.4431 (18)
C8—C91.4413 (17)C85—C861.3829 (18)
C8—C811.4977 (17)C85—H850.9500
C9—C101.4396 (17)C86—H860.9500
C11—C161.3965 (18)
C2—C1—C9119.88 (11)C13—C12—H12119.6
C2—C1—C11115.18 (11)C11—C12—H12119.6
C9—C1—C11124.93 (11)C12—C13—C14119.19 (12)
C1—C2—C3122.46 (12)C12—C13—H13120.4
C1—C2—H2118.8C14—C13—H13120.4
C3—C2—H2118.8C15—C14—C13120.76 (12)
C4—C3—C2119.08 (12)C15—C14—C141118.65 (13)
C4—C3—H3120.5C13—C14—C141120.58 (12)
C2—C3—H3120.5C16—C15—C14119.44 (12)
C3—C4—C10121.23 (12)C16—C15—H15120.3
C3—C4—H4119.4C14—C15—H15120.3
C10—C4—H4119.4C15—C16—C11120.60 (12)
C6—C5—C10120.96 (12)C15—C16—H16119.7
C6—C5—H5119.5C11—C16—H16119.7
C10—C5—H5119.5C82—C81—C86118.93 (11)
C5—C6—C7119.30 (12)C82—C81—C8119.46 (11)
C5—C6—H6120.4C86—C81—C8121.52 (11)
C7—C6—H6120.4C83—C82—C81120.86 (12)
C8—C7—C6122.49 (12)C83—C82—H82119.6
C8—C7—H7118.8C81—C82—H82119.6
C6—C7—H7118.8C82—C83—C84119.47 (12)
C7—C8—C9119.65 (11)C82—C83—H83120.3
C7—C8—C81115.56 (11)C84—C83—H83120.3
C9—C8—C81124.79 (11)C83—C84—C85120.37 (12)
C10—C9—C1116.95 (11)C83—C84—C841119.90 (12)
C10—C9—C8116.99 (11)C85—C84—C841119.73 (12)
C1—C9—C8126.06 (11)C86—C85—C84119.56 (12)
C4—C10—C5119.01 (12)C86—C85—H85120.2
C4—C10—C9120.40 (12)C84—C85—H85120.2
C5—C10—C9120.59 (12)C85—C86—C81120.79 (12)
C16—C11—C12119.22 (12)C85—C86—H86119.6
C16—C11—C1119.01 (11)C81—C86—H86119.6
C12—C11—C1121.67 (11)N14—C141—C14177.90 (17)
C13—C12—C11120.78 (12)N84—C841—C84179.27 (18)
C9—C1—C2—C30.44 (19)C2—C1—C11—C12111.39 (14)
C11—C1—C2—C3179.92 (11)C9—C1—C11—C12−69.16 (16)
C1—C2—C3—C4−0.18 (19)C16—C11—C12—C13−1.45 (19)
C2—C3—C4—C100.18 (19)C1—C11—C12—C13−177.65 (12)
C10—C5—C6—C7−0.33 (19)C11—C12—C13—C141.13 (19)
C5—C6—C7—C8−0.80 (19)C12—C13—C14—C15−0.6 (2)
C6—C7—C8—C91.79 (19)C12—C13—C14—C141177.82 (13)
C6—C7—C8—C81−177.71 (11)C13—C14—C15—C160.4 (2)
C2—C1—C9—C10−0.67 (17)C141—C14—C15—C16−178.07 (13)
C11—C1—C9—C10179.91 (11)C14—C15—C16—C11−0.7 (2)
C2—C1—C9—C8179.44 (12)C12—C11—C16—C151.22 (19)
C11—C1—C9—C80.02 (19)C1—C11—C16—C15177.52 (12)
C7—C8—C9—C10−1.62 (17)C7—C8—C81—C82−65.72 (15)
C81—C8—C9—C10177.84 (11)C9—C8—C81—C82114.80 (14)
C7—C8—C9—C1178.27 (11)C7—C8—C81—C86110.83 (14)
C81—C8—C9—C1−2.27 (19)C9—C8—C81—C86−68.65 (16)
C3—C4—C10—C5179.57 (12)C86—C81—C82—C832.07 (19)
C3—C4—C10—C9−0.45 (19)C8—C81—C82—C83178.71 (12)
C6—C5—C10—C4−179.61 (12)C81—C82—C83—C84−1.37 (19)
C6—C5—C10—C90.41 (19)C82—C83—C84—C850.0 (2)
C1—C9—C10—C40.68 (16)C82—C83—C84—C841−179.70 (13)
C8—C9—C10—C4−179.42 (11)C83—C84—C85—C860.64 (19)
C1—C9—C10—C5−179.34 (11)C841—C84—C85—C86−179.66 (12)
C8—C9—C10—C50.56 (17)C84—C85—C86—C810.08 (19)
C2—C1—C11—C16−64.81 (15)C82—C81—C86—C85−1.42 (18)
C9—C1—C11—C16114.64 (14)C8—C81—C86—C85−177.98 (11)

Hydrogen-bond geometry (Å, °)

Cg1and Cg2 are the centroids of the C1–C10 and C8–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg2i0.952.753.6147 (13)152
C16—H16···Cg2ii0.952.923.6539 (15)135
C82—H82···Cg1i0.952.833.6180 (15)141
C86—H86···Cg1ii0.952.833.6614 (13)147

Symmetry codes: (i) −x+3/2, −y+3/2, −z+1; (ii) x+3/2, y+3/2, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5183).

References

  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lima, C. F., Gomes, L. R., Santos, L. M. N. B. F. & Low, J. N. (2010). Acta Cryst. E66, o3289. [PMC free article] [PubMed]
  • McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography