PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 January 1; 67(Pt 1): o37.
Published online 2010 December 4. doi:  10.1107/S1600536810050166
PMCID: PMC3050223

2-Amino-4-chloro­benzoic acid

Abstract

The title compound, C7H6ClNO2, is almost planar, with an r.m.s. deviation of 0.040 Å. An intra­molecular N—H(...)O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of O—H(...)O hydrogen bonds. These dimers are stacked along [010].

Related literature

For the pharmacological properties of quinazolinone derivatives, see: Prakash Naik et al. (2009 [triangle]); Bembenek et al. (2010 [triangle]); Miller et al. (2010 [triangle]); Sikorska et al. (1998 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-00o37-scheme1.jpg

Experimental

Crystal data

  • C7H6ClNO2
  • M r = 171.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-00o37-efi1.jpg
  • a = 15.4667 (10) Å
  • b = 3.7648 (2) Å
  • c = 23.7598 (15) Å
  • β = 93.015 (3)°
  • V = 1381.59 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.49 mm−1
  • T = 100 K
  • 0.53 × 0.17 × 0.05 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.780, T max = 0.975
  • 34764 measured reflections
  • 3645 independent reflections
  • 3175 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.089
  • S = 1.07
  • 3645 reflections
  • 112 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810050166/hb5757sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050166/hb5757Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the RU research grant (815002). AMF thanks the Libyan Government for providing a scholarship. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Anthranilic acid is required as a starting compound to prepare quinoline derivatives. Quinazolinones are well known as biologically active compounds. Quinazolinones have been studied for their interesting pharmacological properties such as analgesic, antiinflammatory, antibacterial, anticonvulsant, antihypertensive, antimalarial, anticancer activities and as treatment of diabetic complications such as cataracts, nephropathy and neuropathy (Prakash Naik et al., 2009), as well as used as prolyl hydroxylase inhibitors (Bembenek et al., 2010) and antibacterial drugs (Miller et al., 2010). New complexes have been prepared from 2-amino-4-chlorobenzoic acid by Sikorska et al., (1998).

The title compound (Fig. 1) is almost planar with maximum deviation of 0.097 (1) Å at atom O1. An intramolecular N1—H1N1···O1 hydrogen bond generates S(6) ring motif (Bernstein et al., 1995). In the crystal, the molecules are linked into centrosymmetric dimers by O2—H1O2···O1 hydrogen bonds and these dimers are stacked down b axis (Fig. 2, Table 1).

Experimental

The attempt to prepare the Schiff base ligand by stirring 2-amino-4-chlorobenzoic acid (1 mol) and salicyldehyde (1 mol) together at 70 °C for 3 h in 10 ml of ethanol was unsuccessful. The resulting orange solution was filtered and orange needles were formed after a few days of slow evaporation of the solvent at room temperature. Unfortunately, the crystals were that of the starting material (2-amino-4-chlorobenzoic acid) with melting point 119 °C.

Refinement

The O– and N-bound hydrogen atoms were located from difference Fourier map and refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The molecular structure of title compound with 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of title compound viewed down b axis, showing the molecules are linked into dimers.

Crystal data

C7H6ClNO2F(000) = 704
Mr = 171.58Dx = 1.650 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9945 reflections
a = 15.4667 (10) Åθ = 2.6–37.5°
b = 3.7648 (2) ŵ = 0.49 mm1
c = 23.7598 (15) ÅT = 100 K
β = 93.015 (3)°Needle, orange
V = 1381.59 (14) Å30.53 × 0.17 × 0.05 mm
Z = 8

Data collection

Bruker APEXII DUO CCD diffractometer3645 independent reflections
Radiation source: fine-focus sealed tube3175 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 37.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −26→26
Tmin = 0.780, Tmax = 0.975k = −6→6
34764 measured reflectionsl = −38→40

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0479P)2 + 0.5195P] where P = (Fo2 + 2Fc2)/3
3645 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.400495 (11)0.03406 (5)0.207389 (8)0.02000 (6)
O10.01970 (4)0.31432 (19)0.06195 (2)0.02250 (12)
O20.11545 (4)0.57721 (19)0.00817 (2)0.02167 (12)
N10.07764 (4)0.0546 (2)0.16254 (3)0.02152 (13)
C10.15675 (4)0.1453 (2)0.14497 (3)0.01451 (11)
C20.23039 (4)0.0671 (2)0.18024 (3)0.01549 (12)
H2A0.2241−0.04070.21500.019*
C30.31151 (4)0.1502 (2)0.16319 (3)0.01506 (11)
C40.32545 (4)0.3164 (2)0.11206 (3)0.01691 (12)
H4A0.38100.37000.10150.020*
C50.25346 (4)0.3983 (2)0.07761 (3)0.01614 (12)
H5A0.26100.51130.04340.019*
C60.16899 (4)0.31592 (19)0.09275 (3)0.01417 (11)
C70.09544 (5)0.4008 (2)0.05369 (3)0.01611 (12)
H1O20.0692 (10)0.603 (5)−0.0126 (7)0.038 (4)*
H1N10.0309 (10)0.083 (4)0.1425 (6)0.034 (4)*
H2N10.0757 (11)−0.069 (5)0.1911 (7)0.042 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01555 (8)0.02243 (10)0.02140 (9)0.00327 (6)−0.00502 (6)−0.00029 (6)
O10.0145 (2)0.0335 (3)0.0191 (2)−0.0014 (2)−0.00278 (17)0.0055 (2)
O20.0174 (2)0.0316 (3)0.0157 (2)−0.0006 (2)−0.00240 (18)0.0067 (2)
N10.0141 (2)0.0308 (4)0.0196 (3)−0.0016 (2)0.0007 (2)0.0075 (3)
C10.0134 (2)0.0150 (3)0.0150 (2)0.0001 (2)−0.00005 (19)0.0001 (2)
C20.0147 (3)0.0169 (3)0.0146 (2)0.0013 (2)−0.0012 (2)0.0011 (2)
C30.0136 (2)0.0155 (3)0.0158 (2)0.0016 (2)−0.00237 (19)−0.0019 (2)
C40.0134 (2)0.0203 (3)0.0169 (3)−0.0005 (2)−0.0001 (2)−0.0009 (2)
C50.0152 (3)0.0187 (3)0.0144 (2)−0.0007 (2)0.0000 (2)−0.0002 (2)
C60.0139 (2)0.0154 (3)0.0130 (2)0.0005 (2)−0.00089 (19)−0.0004 (2)
C70.0159 (3)0.0183 (3)0.0140 (2)0.0013 (2)−0.00138 (19)−0.0003 (2)

Geometric parameters (Å, °)

Cl1—C31.7425 (7)C2—C31.3746 (10)
O1—C71.2415 (9)C2—H2A0.9300
O2—C71.3197 (9)C3—C41.3933 (10)
O2—H1O20.854 (16)C4—C51.3816 (10)
N1—C11.3572 (9)C4—H4A0.9300
N1—H1N10.851 (16)C5—C61.4078 (9)
N1—H2N10.826 (17)C5—H5A0.9300
C1—C21.4093 (10)C6—C71.4651 (10)
C1—C61.4185 (9)
C7—O2—H1O2107.8 (11)C5—C4—C3117.38 (6)
C1—N1—H1N1123.2 (10)C5—C4—H4A121.3
C1—N1—H2N1117.9 (12)C3—C4—H4A121.3
H1N1—N1—H2N1117.7 (15)C4—C5—C6121.95 (7)
N1—C1—C2118.55 (6)C4—C5—H5A119.0
N1—C1—C6123.17 (6)C6—C5—H5A119.0
C2—C1—C6118.28 (6)C5—C6—C1119.45 (6)
C3—C2—C1119.92 (6)C5—C6—C7119.34 (6)
C3—C2—H2A120.0C1—C6—C7121.20 (6)
C1—C2—H2A120.0O1—C7—O2121.70 (7)
C2—C3—C4123.01 (6)O1—C7—C6123.38 (7)
C2—C3—Cl1118.00 (5)O2—C7—C6114.92 (6)
C4—C3—Cl1118.99 (5)
N1—C1—C2—C3178.90 (7)N1—C1—C6—C5−179.53 (8)
C6—C1—C2—C3−1.19 (11)C2—C1—C6—C50.57 (11)
C1—C2—C3—C40.96 (12)N1—C1—C6—C7−0.92 (12)
C1—C2—C3—Cl1−177.87 (6)C2—C1—C6—C7179.18 (7)
C2—C3—C4—C5−0.05 (12)C5—C6—C7—O1174.64 (7)
Cl1—C3—C4—C5178.77 (6)C1—C6—C7—O1−3.97 (12)
C3—C4—C5—C6−0.59 (12)C5—C6—C7—O2−5.06 (11)
C4—C5—C6—C10.33 (11)C1—C6—C7—O2176.34 (7)
C4—C5—C6—C7−178.31 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.853 (16)1.787 (16)2.6354 (8)173.0 (16)
N1—H1N1···O10.851 (15)2.102 (14)2.6918 (9)126.0 (13)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5757).

References

  • Bembenek, S. D., Hocutt, F. M., Leonard, B. E. Jr, Rabinowitz, M. H., Rosen, M. D., Tarantino, K. T. & Venkatesan, H. (2010). US Patent Appl. 20100204226.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Miller, J. R., Venkataraman, T., Melnick, M. M., Lall, M., Donovan, C., Sarver, R. W., Lee, D.-Y., Ohren, J. & Emerson, D. (2010). Chem. Biol. Drug Des. 75, 444–454. [PubMed]
  • Prakash Naik, H. R., Bhojya Naik, H. S., Ravikumar Naik, T. R., Raghavendra, M., Aravinda, T. & Lamani, D. S. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 460–470.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sikorska, M., Mrozek, R. & Rzqczynska, Z. (1998). J. Therm. Anal. Calorim. 51, 467–475.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography