PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Jan 1, 2011; 67(Pt 1): o139.
Published online Dec 15, 2010. doi:  10.1107/S160053681005169X
PMCID: PMC3050159
Imidazole–imidazolium picrate monohydrate
Rodolfo Moreno-Fuquen,a* Regina De Almeida Santos,b and Lina Aguirrec
aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia
bInstituto de Química,IFSC, Universidade de São Paulo, São Carlos, Brazil
cUniversidad Menendez Pelayo, Casa de la Ciencia, Pabellón del Perú, Avda Maria Luisa, s/n 41013, Sevilla, Spain
Correspondence e-mail: rodimo26/at/yahoo.es
Received November 22, 2010; Accepted December 9, 2010.
Abstract
The asymmetric unit of the title compound, C3H5N2 +·C6H2N3O7 ·C3H4N2·H2O or H(C3H4N2)2 +·C6H2N3O7 ·H2O, contains a diimidazolium cationic unit, one picrate anion and one mol­ecule of water. In the crystal, the components are connected by N—H(...)O, N—H(...)N and O—H(...)O hydrogen bonds, forming a two-dimensional network parallel to (001). In addition, weak inter­molecular C—H(...)O hydrogen bonds lead to the formation of a three-dimensional network featuring R 5 5(19) rings.
Related literature
For background to imidazolium salts see: Moreno-Fuquen et al. (2009a [triangle],b [triangle] [triangle]). For imidazole as an anti­fungal agent, see: Miranda et al. (1998 [triangle]); Rodriguez & Acosta (1997 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]). For hydrogen-bond geometries, see: Emsley (1984 [triangle]); Etter (1990 [triangle]); Nardelli (1995 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-67-0o139-scheme1.jpg Object name is e-67-0o139-scheme1.jpg
Crystal data
  • C3H5N2 +·C6H2N3O7 ·C3H4N2·H2O
  • M r = 383.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-67-0o139-efi10.jpg
  • a = 3.8180 (1) Å
  • b = 20.8160 (8) Å
  • c = 21.4420 (8) Å
  • V = 1704.11 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 291 K
  • 0.53 × 0.21 × 0.14 mm
Data collection
  • Bruker–Nonius KappaCCD diffractometer
  • 12017 measured reflections
  • 2207 independent reflections
  • 1723 reflections with I > 2σ(I)
  • R int = 0.062
Refinement
  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.109
  • S = 1.06
  • 2207 reflections
  • 248 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.15 e Å−3
Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681005169X/lh5175sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053681005169X/lh5175Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002 [triangle]). RMF also thanks the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, USP, Brazil, for partial financial support.
supplementary crystallographic information
Comment
This work is part of a series of studies, related to the imidazole system which, has been conducted by the crystallography group at the University del Valle (Moreno-Fuquen et al., 2009a,b). Imidazole, an aromatic heterocyclic, classified as an alkaloid, is present as an antifungal agent in commercial pharmaceutical products (Miranda et al., 1998; Rodriguez & Acosta, 1997). A displacement ellipsoid plot of the title molecule (I) with the atomic numbering scheme is shown in Figure 1. The asymmetric unit contains two imidazole molecules as cationic unit, one picrate ion and one molecule of water. In the crystal, molecules are connected by N—H···O, N—H···N and O—H···O hydrogen bonds. Interactions are of moderate character (Emsley, 1984) involving the following donor···acceptors: N5···N6, N4···O5, N7···O1 and O5···O1 and other weak C—H···O molecular interactions are also observed (Nardelli, 1995). In a substructure, the atom O5 in the molecule at (x, y, z) acts as donor and as an acceptor with atoms O1 and N4 in the molecule at (x, y, z). In addtion, atom N5 in the molecule at (x, y, z) acts as donor to the atom N6 in the molecule at (x, y, z). The atom N7 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O1 in the molecule at (-x + 1, y - 1/2, -z + 3/2). These interactions form chains of molecules running along the b axis (see Fig. 2). In a second substructure, the atom O5 in the molecule at (x, y, z) acts as donor to atom O1 in the molecule at (x + 1, y, z), forming chains of water molecules running along a axis, where the atom O1 of the picrate ion, serves as a bridge in the chain (see Fig. 3). Finally, weak C10—H101···O6iii and C9—H91···O8iv interactions, together with the hydrogen bonds N4—H401···O5, O5—H501···O1 and N7—H701···O1ii, described above, form R55(19) rings (Etter, 1990) which run along the c axis (see Fig. 4). The combination of these interactions allow the formation of three-dimensional network of the structure.
Experimental
Reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The synthesis of the title compound was carried out by slow evaporation of a solution of imidazole (1.360 g. 0.02 mol) and picric acid (2.29 g. 0.01 mol) in 100 ml of dry acetonitrile. After a week, yellow prisms of a good quality suitable for X-ray analysis were obtained. M. p. 494 (1) K
Refinement
In the Absence of significant anomalous dispersion effects the Friedel pairs were merged. The H atoms were located in a difference map, but were repositioned geometrically. They were initially refined with soft restraints on bond lengths and angles to regularize their geometry (C—H = 0.93, N—H5 = 0.86Å) and Uiso(H) (1.2 times Ueq of the parent atom). After this, the positions were refined with riding constraints. Atoms H401, H501, H502 and H701 were found in a difference Fourier map and their coordinates were fixed with refined Uiso(H) values.
Figures
Fig. 1.
Fig. 1.
An ORTEP-3 (Farrugia, 1997) plot of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 2.
Fig. 2.
Part of the crystal structure of (I), showing the formation of chains of molecules running along the b axis. Symmetry code: (ii) -x + 1, y - 1/2, -z + 3/2.
Fig. 3.
Fig. 3.
Part of the crystal structure of (I), showing the formation of chains of water molecules running along a axis. The O1 atom of the picrate ion, serves as a bridge in this chain. Symmetry code: (i) x + 1, y, z.
Fig. 4.
Fig. 4.
Part of the crystal structure of (I), showing the formation of R55(19) rings running along the c axis. Symmetry code: (iii) x - 1/2, -y + 3/2, -z + 1; (iv) -x + 3/2, -y + 2, z + 1/2; (v) i-x, y + 1/2, -z + 3/2.
Crystal data
C3H5N2+·C6H2N3O7·C3H4N2·H2ODx = 1.494 Mg m3
Mr = 383.29Melting point: 494(1) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6888 reflections
a = 3.8180 (1) Åθ = 2.9–27.1°
b = 20.8160 (8) ŵ = 0.13 mm1
c = 21.4420 (8) ÅT = 291 K
V = 1704.11 (10) Å3Prism, yellow
Z = 40.53 × 0.21 × 0.14 mm
F(000) = 792
Data collection
Bruker–Nonius KappaCCD diffractometer1723 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
horizonally mounted graphite crystalθmax = 27.1°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = −4→3
CCD scansk = −20→26
12017 measured reflectionsl = −27→26
2207 independent reflections
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1542P] where P = (Fo2 + 2Fc2)/3
2207 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.15 e Å3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
O10.2191 (5)1.03522 (7)0.55396 (7)0.0571 (4)
O2−0.1566 (6)1.14493 (9)0.57670 (8)0.0731 (5)
O30.1895 (7)1.21912 (8)0.54543 (9)0.0788 (6)
O40.2390 (9)0.92426 (8)0.48892 (9)0.0914 (8)
O50.7228 (7)0.95183 (9)0.60361 (10)0.0802 (6)
O60.5569 (8)0.92982 (10)0.40721 (10)0.0965 (8)
O70.2812 (11)1.20386 (11)0.31429 (10)0.1096 (10)
O80.4859 (10)1.11533 (12)0.27852 (9)0.1128 (11)
N10.0590 (5)1.16612 (9)0.54037 (9)0.0515 (5)
N20.3639 (9)1.14743 (12)0.32037 (10)0.0774 (7)
N30.3776 (7)0.95481 (9)0.44756 (9)0.0622 (6)
N40.5815 (7)0.82430 (10)0.61111 (11)0.0659 (6)
N50.5551 (7)0.73058 (10)0.65339 (10)0.0660 (6)
H50.57420.69990.68000.079*
N60.6123 (7)0.63572 (11)0.73624 (9)0.0693 (6)
N70.7046 (8)0.58105 (11)0.82023 (9)0.0694 (7)
C10.2292 (6)1.05863 (10)0.50031 (9)0.0464 (5)
C20.1650 (6)1.12594 (10)0.48771 (9)0.0460 (5)
C30.2078 (7)1.15485 (10)0.43161 (10)0.0523 (6)
H310.16861.19870.42700.063*
C40.3112 (8)1.11772 (11)0.38114 (10)0.0540 (6)
C50.3698 (7)1.05261 (11)0.38734 (10)0.0530 (6)
H510.44051.02840.35320.064*
C60.3229 (7)1.02395 (10)0.44446 (10)0.0496 (5)
C70.4412 (8)0.78433 (12)0.56804 (12)0.0636 (7)
H710.37110.79520.52790.076*
C80.4228 (8)0.72631 (12)0.59449 (12)0.0648 (7)
H810.33480.68930.57590.078*
C90.6470 (9)0.79029 (14)0.66155 (12)0.0693 (7)
H910.74530.80660.69790.083*
C100.5174 (9)0.57373 (15)0.72587 (12)0.0726 (8)
H1010.42860.55770.68860.087*
C110.5717 (10)0.53967 (15)0.77749 (12)0.0766 (9)
H1110.52740.49610.78310.092*
C120.7269 (10)0.63802 (14)0.79433 (12)0.0729 (8)
H1210.81110.67470.81400.088*
H4010.64130.86800.60860.095 (10)*
H7010.75230.57180.85930.084 (9)*
H5010.56050.97920.58770.41 (7)*
H5020.92120.97400.58330.17 (2)*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
O10.0768 (12)0.0511 (8)0.0435 (7)−0.0053 (9)0.0018 (8)0.0016 (6)
O20.0723 (12)0.0860 (13)0.0609 (10)0.0056 (12)0.0146 (11)−0.0090 (10)
O30.0998 (15)0.0529 (9)0.0836 (12)0.0004 (11)−0.0011 (13)−0.0191 (9)
O40.152 (2)0.0493 (9)0.0731 (12)−0.0071 (13)0.0180 (16)0.0000 (9)
O50.0931 (16)0.0565 (10)0.0909 (13)−0.0093 (11)0.0083 (14)0.0037 (9)
O60.142 (2)0.0693 (11)0.0781 (12)0.0391 (14)0.0226 (16)−0.0082 (10)
O70.183 (3)0.0739 (13)0.0718 (12)0.0005 (19)0.0005 (19)0.0242 (11)
O80.180 (3)0.1017 (16)0.0570 (10)−0.005 (2)0.0428 (17)0.0030 (12)
N10.0532 (11)0.0501 (10)0.0514 (10)0.0066 (9)−0.0063 (10)−0.0048 (9)
N20.108 (2)0.0727 (14)0.0519 (12)−0.0131 (16)0.0059 (14)0.0083 (11)
N30.0874 (16)0.0495 (10)0.0498 (10)0.0086 (12)−0.0034 (12)−0.0073 (9)
N40.0724 (15)0.0513 (11)0.0742 (13)−0.0013 (11)0.0062 (12)−0.0015 (10)
N50.0846 (16)0.0611 (12)0.0525 (11)−0.0011 (12)−0.0043 (12)0.0073 (10)
N60.0808 (16)0.0752 (14)0.0520 (11)0.0021 (14)−0.0064 (12)0.0104 (10)
N70.0958 (18)0.0699 (13)0.0425 (10)0.0095 (14)−0.0023 (12)0.0080 (10)
C10.0505 (13)0.0450 (10)0.0437 (11)−0.0041 (10)−0.0014 (10)−0.0019 (9)
C20.0462 (12)0.0459 (10)0.0460 (10)0.0010 (10)−0.0026 (10)−0.0058 (9)
C30.0582 (14)0.0442 (11)0.0545 (12)0.0004 (11)−0.0052 (12)0.0008 (10)
C40.0626 (15)0.0556 (12)0.0439 (11)−0.0069 (12)−0.0005 (11)0.0059 (10)
C50.0580 (14)0.0578 (12)0.0433 (11)0.0015 (12)0.0029 (11)−0.0063 (10)
C60.0570 (14)0.0437 (11)0.0481 (11)0.0008 (11)−0.0022 (11)−0.0034 (9)
C70.0769 (19)0.0611 (14)0.0529 (13)0.0032 (14)−0.0062 (13)0.0025 (11)
C80.0818 (19)0.0564 (13)0.0562 (13)−0.0061 (14)−0.0071 (14)−0.0028 (11)
C90.0819 (19)0.0720 (16)0.0541 (14)−0.0056 (16)−0.0044 (15)−0.0119 (13)
C100.084 (2)0.0856 (18)0.0482 (13)−0.0080 (18)−0.0031 (15)−0.0003 (13)
C110.104 (3)0.0689 (15)0.0567 (14)−0.0112 (18)0.0035 (16)0.0030 (13)
C120.098 (2)0.0665 (15)0.0542 (13)0.0016 (17)−0.0076 (16)0.0045 (12)
Geometric parameters (Å, °)
O1—C11.250 (2)N7—C121.312 (3)
O2—N11.216 (3)N7—C111.356 (4)
O3—N11.216 (3)N7—H7010.880
O4—N31.213 (3)C1—C61.443 (3)
O5—H5010.908C1—C21.448 (3)
O5—H5020.988C2—C31.355 (3)
O6—N31.220 (3)C3—C41.387 (3)
O7—N21.223 (3)C3—H310.9300
O8—N21.212 (3)C4—C51.380 (3)
N1—C21.462 (3)C5—C61.374 (3)
N2—C41.456 (3)C5—H510.9300
N3—C61.456 (3)C7—C81.336 (4)
N4—C91.317 (3)C7—H710.9300
N4—C71.354 (3)C8—H810.9300
N4—H4010.940C9—H910.9300
N5—C91.303 (3)C10—C111.331 (4)
N5—C81.363 (3)C10—H1010.9300
N5—H50.8600C11—H1110.9300
N6—C121.321 (3)C12—H1210.9300
N6—C101.359 (4)
H501—O5—H50293.71C4—C3—H31120.7
O3—N1—O2123.3 (2)C5—C4—C3121.2 (2)
O3—N1—C2118.3 (2)C5—C4—N2118.7 (2)
O2—N1—C2118.34 (19)C3—C4—N2120.0 (2)
O8—N2—O7123.4 (2)C6—C5—C4119.4 (2)
O8—N2—C4118.8 (2)C6—C5—H51120.3
O7—N2—C4117.9 (3)C4—C5—H51120.3
O4—N3—O6122.7 (2)C5—C6—C1123.69 (19)
O4—N3—C6119.3 (2)C5—C6—N3116.8 (2)
O6—N3—C6118.0 (2)C1—C6—N3119.48 (19)
C9—N4—C7107.8 (2)C8—C7—N4106.7 (2)
C9—N4—H401121.4C8—C7—H71126.7
C7—N4—H401130.8N4—C7—H71126.7
C9—N5—C8106.6 (2)C7—C8—N5108.4 (2)
C9—N5—H5126.7C7—C8—H81125.8
C8—N5—H5126.7N5—C8—H81125.8
C12—N6—C10106.1 (2)N5—C9—N4110.6 (2)
C12—N7—C11108.2 (2)N5—C9—H91124.7
C12—N7—H701126.0N4—C9—H91124.7
C11—N7—H701125.6C11—C10—N6109.2 (2)
O1—C1—C6125.19 (19)C11—C10—H101125.4
O1—C1—C2122.94 (19)N6—C10—H101125.4
C6—C1—C2111.79 (17)C10—C11—N7106.4 (3)
C3—C2—C1125.10 (19)C10—C11—H111126.8
C3—C2—N1117.70 (18)N7—C11—H111126.8
C1—C2—N1117.15 (17)N7—C12—N6110.2 (3)
C2—C3—C4118.6 (2)N7—C12—H121124.9
C2—C3—H31120.7N6—C12—H121124.9
O1—C1—C2—C3172.9 (3)C4—C5—C6—N3178.0 (3)
C6—C1—C2—C3−4.0 (4)O1—C1—C6—C5−172.4 (3)
O1—C1—C2—N1−4.6 (4)C2—C1—C6—C54.4 (4)
C6—C1—C2—N1178.5 (2)O1—C1—C6—N36.7 (4)
O3—N1—C2—C3−40.4 (3)C2—C1—C6—N3−176.5 (2)
O2—N1—C2—C3139.3 (2)O4—N3—C6—C5−156.8 (3)
O3—N1—C2—C1137.3 (2)O6—N3—C6—C521.7 (4)
O2—N1—C2—C1−43.0 (3)O4—N3—C6—C124.0 (4)
C1—C2—C3—C42.0 (4)O6—N3—C6—C1−157.5 (3)
N1—C2—C3—C4179.5 (2)C9—N4—C7—C80.6 (3)
C2—C3—C4—C50.1 (4)N4—C7—C8—N5−0.6 (3)
C2—C3—C4—N2−179.2 (3)C9—N5—C8—C70.5 (4)
O8—N2—C4—C5−6.2 (5)C8—N5—C9—N4−0.1 (4)
O7—N2—C4—C5173.6 (3)C7—N4—C9—N5−0.3 (4)
O8—N2—C4—C3173.1 (3)C12—N6—C10—C110.6 (4)
O7—N2—C4—C3−7.1 (5)N6—C10—C11—N7−0.5 (4)
C3—C4—C5—C60.4 (4)C12—N7—C11—C100.1 (4)
N2—C4—C5—C6179.7 (3)C11—N7—C12—N60.2 (4)
C4—C5—C6—C1−2.9 (4)C10—N6—C12—N7−0.5 (4)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
N5—H5···N60.861.812.666 (3)180
N4—H401···O50.941.782.714 (3)176
O5—H501···O10.911.902.801 (3)179
O5—H502···O1i0.991.822.782 (3)163
N7—H701···O1ii0.882.012.876 (2)167
C10—H101···O6iii0.932.513.352 (4)151
C9—H91···O8iv0.932.583.481 (3)162
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x−1/2, −y+3/2, −z+1; (iv) −x+3/2, −y+2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5175).
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Emsley, J. (1984). Complex Chemistry, Structure and Bonding. Vol. 57, pp. 147–191. Berlin: Springer-Verlag.
  • Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Miranda, C. L., Henderson, M. C. & Buhler, D. R. (1998). Toxicol. Appl. Pharmacol. 148, 237–244. [PubMed]
  • Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009a). Acta Cryst. E65, o2717. [PMC free article] [PubMed]
  • Moreno-Fuquen, R., Kennedy, A. R., Gilmour, D., De Almeida Santos, R. H. & Viana, R. B. (2009b). Acta Cryst. E65, o3044–o3045. [PMC free article] [PubMed]
  • Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rodriguez, R. J. & Acosta, D. Jr (1997). Toxicology, 117, 123–131. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography