Search tips
Search criteria 


Logo of plosonePLoS OneView this ArticleSubmit to PLoSGet E-mail AlertsContact UsPublic Library of Science (PLoS)
PLoS One. 2010; 5(12): e14484.
Published online 2010 December 31. doi:  10.1371/journal.pone.0014484
PMCID: PMC3013096

Turnover of BRCA1 Involves in Radiation-Induced Apoptosis

Gen Sheng Wu, Editor



Germ-line mutations of the breast cancer susceptibility gene-1 (BRCA1) increase the susceptibility to tumorigenesis. The function of BRCA1 is to regulate critical cellular processes, including cell cycle progression, genomic integrity, and apoptosis. Studies on the regulation of BRCA1 have focused intensely on transcription and phosphorylation mechanisms. Proteolytic regulation of BRCA1 in response to stress signaling remains largely unknown. The manuscript identified a novel mechanism by which BRCA1 is regulated by the ubiquitin-dependent degradation in response to ionization.

Methodology/Principal Findings

Here, we report that severe ionization triggers rapid degradation of BRCA1, which in turn results in the activation of apoptosis. Ionization-induced BRCA1 turnover is mediated via an ubiquitin-proteasomal pathway. The stabilization of BRCA1 significantly delays the onset of ionization-induced apoptosis. We have mapped the essential region on BRCA1, which mediates its proteolysis in response to ionization. Moreover, we have demonstrated that BRCA1 protein is most sensitive to degradation when ionization occurs during G2/M and S phase.


Our results suggest that ubiquitin-proteasome plays an important role in regulating BRCA1 during genotoxic stress. Proteolytic regulation of BRCA1 involves in ionization-induced apoptosis.


Germ-line mutations in BRCA1 gene increase the susceptibility for the development of familial breast and ovarian cancers, indicating that BRCA1 functions as a tumor suppressor whose impaired activity would contribute to tumorigenesis [1]. BRCA1 has been implicated in numerous cellular processes, including DNA repair, mRNA transcription, cell cycle regulation, chromatin remodeling and protein ubiquitylation [2]. Since all these processes are involved in the maintenance of genomic stability, BRCA1 has been implicated as a key regulator of the cellular response to DNA damage. Consistent with its involvement in multiple cellular processes, BRCA1 has been shown to interact with both DNA and cellular proteins, although the exact biological function of BRCA1 remains to be defined [3], [4], [5], [6]. So far, the only known biochemical function of BRCA1 is its E3 ligase activity when BRCA1 forms a heterodimer with BARD1. Both of them have a RING-finger motif near their amino termini [7], [8], [9]. Importantly, tumor-associated mutation in the RING-finger domain of BRCA1 abolishes the ubiquitin ligase activity of the BRCA1/BARD1 complex, suggesting a strong connection between BRCA1's E3 ligase activity and its tumor suppressor function [10], [11].

Modulation of BRCA1 activity is important since any deficiency in BRCA1 activity may predispose cells to enter tumorigenesis. BRCA1 has been reported to be phosphorylated in a cell cycle dependent manner [12], [13] and also in response to ionizing radiation [14], [15]. However, the functional consequences of the phosphorylation of BRCA1 remain unclear. Speculation exists that BRCA1 phosphorylation may affect its cellular localization and stability as well as altering its ability to bind other proteins and thus, affect its biochemical activities as they are related to DNA damage repair or gene transcription [16]. Another way to modulate the activity of BRCA1 is through post-translational modifications such as ubiquitylation or sumoylation. BRCA1 has been reported to be degraded through the ubiquitin-proteasome mediated pathway [17], [18]. Moreover, the levels of protein expression for BRCA1 fluctuate during the cell cycle and this fluctuation has been demonstrated to be mediated in part by ubiquitin-proteasomal degradation [19]. Although the E3 ligase that targets BRCA1 for proteolysis remains unknown, the enhanced degradation of BRCA1 by a deregulated E3 ligase could be one of the mechanisms by which BRCA1 levels are reduced in sporadic breast cancer [20], [21]. In addition, BRCA1 can associate with Ubc9, a mediator of the conjugating ubiquitin-like protein SUMO1, suggesting that BRCA1 is susceptible to sumolynation, which may either protect the protein from degradation or affect its cellular localization [16], [22].

Previous studies have established the critical role of ubiquitylation in DNA damage response. In response to DNA damage, many proteins that are involved in checkpoint activation (e.g., Cdc25A and Chk1), chromatin remodeling (e.g., H2A, H2AX), DNA repair (e.g., FANCD2) and apoptosis regulation (e.g., Bcl-2s and IAPs) have been reported to be poly- or mono-ubiquitylated resulting in their degradation or activation as signal transducer [23], [24], [25], [26], [27], [28], [29]. BRCA1 is thought to be one of the E3 ligases responsible for DNA damage induced-ubiquitylation based on the co-localization of conjugated ubiquitin with BRCA1/BARD1 [23], [30]. Although BRCA1/BARD1 is able to ubiquitylate a number of potential targets in vitro, including FANCD2, RNA polymerase II, nucleoplasmin, p53, H2AX and histones H2A, H2B, H3 and H4, its bone fide substrates in vivo remain unknown [31], [32], [33]. To further understand the role of ubiquitin-proteasomal system (UPS) in genomic integrity, we have established a system to screen for degraded proteins induced by γ irradiation. Surprisingly, we found that BRCA1 is degraded in an ubiquitin-proteasome dependent manner in response to high dosage (20 Gy) γ irradiation. Our results further suggest that proteolytic regulation of BRCA1 is involved in γ irradiation-induced apoptosis.

Materials and Methods

Plasmids and Constructs

A set of BRCA1 mutants were engineered by PCR using the following primers:










and then were cloned into pCS2-HA, a mammalian expression vector.

Cell culture

HeLa cells (ATCC) or mouse embryonic fibroblast BRCA1+/+ and BRCA1−/− (ATCC) were cultured in Dulbecco's modified essential medium (Gibco-BRL) supplemented with 10% or 15% fetal bovine serum and antibiotics. Human breast cancer cell line MCF7 (ATCC) was grown in RPMI 1640 supplemented with 10% FBS and antibiotics. All cell lines were maintained at 37°C in an atmosphere of 95% air and 5% CO2.


Cells were irradiated using a gamma irradiator (Caesium-137 source) and allowed to recover at 37°C for varying time periods.

Proteasome inhibitor treatments

Cells were treated with proteasome inhibitor MG-132 and ALLN at final concentrations of 20 µM and 100 µM in DMSO (0.1%) respectively. Control cells were treated with 0.1% DMSO.


Cells were synchronized in S-phase with double thymidine and in G2/M phase by thymidine-nocodazole treatment as described previously [34]. For cell cycle progression measured by FACS analysis, cells were fixed in 70% ethanol and stained with propidium iodide (Sigma).

Western blotting and immunoprecipitation

Cells were pelleted, washed three times in 1×PBS, and lysed with lysis buffer (Tris 50 mM pH 7.4, NaCl 2.5 M, EDTA 5 mM, Triton X-100 0.1%) containing 1× complete protease inhibitors cocktail (Roche, Indianapolis, IN, USA). Total protein (30–50 µg) was heated 5 min at 90°C in 4× sample buffer (Invitrogen). Denatured samples were separated on NuPAGE 4–12% Bis-Tris gel or 3~8% Tris-Acetate gel (Invitrogen), transferred to nitrocellulose membrane, and probed with the indicated primary antibody. Immunocomplexes were detected by incubation with peroxidase-conjugated secondary antibody and ECL chemiluminescence detection (Amersham). For in vivo BRCA1 ubiquitylation, cells were lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl,1 mM PMSF, 1 mM EDTA, 1% Triton X-100, 1% Sodium deoxycholate, 0.1% SDS, 1× protease inhibitors cocktail (Roche)) and then BRCA1 protein was immunoprecipitated from 2 mg total cell extracts for 16 hours at 4°C using anti-BRCA1 antibody. The antibody was captured by incubation using protein A/G agarose beads (PIERCE) for 2 hour at 4°C. Beads were washed 3 times in 1 ml ice-cold RIPA buffer followed by 2 times in 1 ml ice-cold PBS and heated for 10 minutes at 95°C in 2× Laemmli sample buffer. Immunoprecipitated proteins were analyzed by Western blotting with anti-ubiquitin antibody.


RNA was extracted using the TRIzol (Invitrogen) and was reverse transcribed using random hexamers as reaction primers. Quantitative assessments of cDNA amplification for BRCA1 [35] and the internal reference gene 18S were performed by a fluorescence-based real-time detection method (Biorad, Munchen, Germany) and the SYBR Green SuperMIX (Biorad). The oligonucleotides used are described previously (35). Polymerase chain reaction used consisted of 3 min at 95°C, followed by 30 cycles at 95°C for 15 s and 60°C for 1 min. To assure the amplicon specificity for each primer set, the PCR products were then subjected to a melting curve analysis. For each PCR, a standard curve was produced, using four consecutive 1[ratio]10 dilutions of a positive sample. All samples were run in triplicate.

In vitro degradation

Cell extracts were prepared from γ irradiation treated and untreated cells as described previously [34], [36]. 35S-labeled HA-tagged human wild-type BRCA1 and mutant BRCA1 proteins were synthesized by the TNT reticulocyte lysate system (Promega). Reaction mixtures containing 10 ng of 35S-labeled protein, 1.25 mg/ml ubiquitin (Sigma), 0.1 mg/ml cycloheximide (Sigma) and an energy regeneration system were incubated at room temperature. Aliquots were removed at indicated time points and reactions were terminated by the addition of SDS sample buffer. Samples were analyzed by 10% SDS-PAGE.

Colony formation assay

Long-term survival of HeLa cells was determined in a clonogenic assay. Briefly, after treatment, cells were plated (50 cells/well) in 6 well plates. After 10 to 12 days in culture, colonies were exposed to staining solution containing 0.25% crystal violet and 10% formalin (35% v/v) in 80% methanol for 30 min, washed with water, and counted.

Apoptosis analysis

After treatment, cells were harvested and washed once with PBS. PARP cleavage, Annexin V-FITC staining and flow cytometric analysis were used to assess apoptosis. PARP cleavage was detected by Western blotting. Annexin V-positive or sub-G1 peak cells were defined as a percentage of apoptotic cells.


BRCA1 protein levels are drastically altered in response to γ irradiation

To study the role of UPS in genomic integrity, we have established a system to screen γ irradiation-induced degraded protein [34], [37]. Surprisingly, we found that BRCA1, a key protein in DNA damage response, was degraded in response to relatively high dose of γ irradiation (20 Gy) but not in response to low dose (5 Gy, Figure S1). To further validate this observation, HeLa cells were treated with 20 Gy γ irradiation and a time course evaluation of BRCA1 protein expression was examined. As shown in Figure 1A, the decrease in BRCA1 protein expression began about 30 minutes after irradiation and undetectable BRCA1 protein levels lasted for over 12 hours, while other examined proteins including cyclin B, ATM, PCNA and Skp2 were stable. We also tested the stability of BRCA1 protein in response to other genotoxic stress such as ADR (Adriamycin) and MMS (Mitomycin). As shown in Figure 1B, BRCA1 was rapidly degraded in response to γ irradiation, while no detectable alteration of BRCA1 was observed in the presence of ADR or MMS. To understand the change in stability of BRCA1 in response to the γ irradiation at different stages of the cell cycle, we examined the kinetics of BRCA1 protein levels in MCF7 cells after exposure to γ irradiation. As shown in Figure 1C, BRCA1 was drastically degraded in response to γ irradiation in MCF7 cells, suggesting that γ irradiation-induced BRCA1 degradation is not a cell type specific event.

Figure 1
BRCA1 protein levels are altered by γ irradiation.

γ irradiation-induced BRCA1 degradation is mediated by the UPS

To ask whether γ irradiation-induced BRCA1 turnover is mediated by the UPS, we examined the possible change in transcriptional regulation of BRCA1 in response to severe γ irradiation. As shown in Figure 2A, no significant alteration of BRCA1 mRNA was detected after γ irradiation, while BRCA1 protein levels dropped dramatically, suggesting that the drop in BRCA1 protein levels caused by γ irradiation was due to protein turnover. To further confirm that γ irradiation-induced BRCA1 turnover is mediated by the UPS, we examined the effect of proteasomal inhibitor on γ irradiation-induced BRCA1 degradation. As shown in Figure 2A, γ irradiation-induced BRCA1 degradation was largely blocked by MG132 or ALLN suggesting γ irradiation-induced BRCA1 degradation is through the proteasomal pathway, consistent with previous reports [17], [19]. To test whether BRCA1 was conjugated to ubiquitin molecules induced by γ irradiation, we carried out immunoprecipitation of BRCA1 coupled with immunoblotting using anti-ubiquitin antibody. As shown in Figure 2B, ubiquitin-conjugated BRCA1 was obviously detected at 15 minutes and peaked 30 minutes after γ irradiation. Taken together, our results suggest that BRCA1 is degraded in an ubiquitin-proteasomal dependent manner in response γ irradiation.

Figure 2
γ irradiation-induced degradation of BRCA1 is mediated by the ubiquitin-proteasomal pathway.

BRCA1 protein stability is sensitive in response to γ irradiation during S and G2/M of the cell cycle

BRCA1 has been described as a multiple-functional protein, which plays an important role in cell cycle control and apoptosis besides its function in genomic integrity [38]. A recent study has demonstrated that BRCA1 protein levels fluctuate during the cell cycle [19]. To test the response of BRCA1 protein levels to γ irradiation at different stages of the cell cycle, we measured the kinetics of BRCA1 protein levels during the cell cycle by cellular synchronization coupled with immunoblotting. As shown in Figure 3A, BRCA1 protein accumulated in G2/M and was maintained at relatively low levels in G1 and S phase, which is consistent with previous observation [19]. We next synchronized cells at different stages and then treated the synchronized cells with γ irradiation at G2/M, G1 and S phase and monitored the kinetics of BRCA1 protein levels. Comparing the pattern of BRCA1 oscillation during the cell cycle, we noticed that exposure of the synchronized cells to γ irradiation at G2/M and S phase caused dramatic alteration of the BRCA1 protein levels, while no significant change was observed for the cells treated at G1 phase (Figure 3B). Taken together, these results suggest that BRCA1 protein levels are sensitive to γ irradiation at G2/M and S phase during the cell cycle.

Figure 3
Different sensitivities of BRCA1 protein to γ irradiation at different stages of the cell cycle.

Mapping the domain of BRCA1 mediating the γ irradiation-induced BRCA1 degradation

To determine the region of BRCA1 that confers the degradative response to γ irradiation, we generated a series of BRCA1 deletion mutants and examined the stability of these BRCA1 mutants using an in vitro protein degradation assay (Figure 4A and B) [34]. In this protein degradation assay, 35S-labeled in vitro-translated wild-type BRCA1 and its mutants were subjected to cell extracts prepared from γ irradiation-treated cells. Aliquots were then collected at different time points. Protein stability of the BRCA1 mutants was detected by SDS-PAGE and auto-radiography [34]. As shown in Figure 4C, all mutants missing the C-terminus were quite stable in response to γ irradiation, while the wild-type and all N-terminal mutants were degraded in the extract prepared from the cells treated with γ irradiation. This result suggests that the C-terminal region is important in facilitating the γ irradiation-induced BRCA1 degradation.

Figure 4
Mapping of functional domains mediating γ irradiation-induced BRCA1 degradation.

BRCA1 degradation is correlated with the cellular survival and apoptosis after γ irradiation

Our preliminary study has suggested that BRCA1 protein stability is dependent on the dosage γ irradiation. To explore the possible physiological relevance for acute γ irradiation-induced BRCA1 degradation, we initially tested the cellular survival in response to γ irradiation using a clonogenic cell survival analysis [39]. As shown in Figure 5A and B, γ irradiation affected the cell survival in a dosage dependent manner. Two weeks after irradiation, cellular colonies significantly dropped at a dosage of 5 or 10 Gy, while almost no colonies were found on the plate treated with 20 Gy, suggesting that irradiating cells with severe doses of γ irradiation induces cell death (Figure 5A and B).

Figure 5
γ irradiation induces apoptosis in HeLa S3 cells.

To dissect the effect of γ irradiation on induction of cell apoptosis and further examine the correlation between the BRCA1 degradation and apoptosis, we tested the effect of γ irradiation on cell apoptosis using three different assays, including measuring cell cycle profile (sub-G1 peak), PARP cleavage and Annexin-V staining [36]. As shown in Figure 5C–F, exposure of cell to γ irradiation(20 Gy) significantly induced cellular apoptosis as demonstrated by the measurement of sub-G1 peak, PARP cleavage as well as the results from Annexin-V staining. Given that acute γ irradiation induces rapid BRAC1 degradation, our result suggests that the acute γ irradiation induced rapid BRCA1 turnover may be correlated with cellular apoptosis after γ irradiation.

BRCA1 modulates the cellular susceptibility for apoptosis induced by γ irradiation

To analyze the biological relevance of the γ irradiation mediated decrease in BRCA1, we examined the effect of BRCA1 protein levels on cellular susceptibility for the onset of apoptosis. We compared the susceptibility of apoptosis in mouse embryonic fibroblast cells and their corresponding BRCA1-null cells. Consistent with the result for HeLa cells, we observed that levels of BRCA1 significantly decreased in response to γ irradiation at 20 Gy in MEF cells (Figure 6A). Using PARP cleavage as a readout, we estimated the onset of apoptosis between wild-type and BRCA1-null MEF cells. As shown in Figure 6B and C, cleaved PARP was observed in wild-type cells 9 hours after exposure to γ irradiation, while loss of BRCA1 significantly enhanced an early PARP cleavage at 3 hours after γ irradiation in BRCA1- null cells. Our molecular mapping results showed that a loss of C-terminal BRCT domain could stabilize BRCA1 in the presence of γ irradiation (Figure 4C). To test the effect of BRCA1 stabilization on the γ irradiation-induced apoptosis, we performed an interference experiment by transfecting a non-degradable BRCA1 (1–1580) mutant. As shown in Figure 6D and E, overexpression of non-degradable BRCA1 significantly delayed the initiation of apoptosis. Similar to this observation, the overexpression of full-length BRCA1 delayed the onset of apoptosis induced by γ irradiation as demonstrated by nuclei condensation and Annexin V staining (Figure 6F and G). These results suggest that BRCA1 plays an important role in modulating the onset of apoptosis induced γ irradiation.

Figure 6
BRCA1 is important in modulating the onset of apoptosis in the presence of γ irradiation.


The critical role for BRCA1 has been demonstrated in multiple cellular processes, including cell cycle regulation, genomic integrity, development and apoptosis [40]. In the past decade, intense efforts have been made to address the mechanism by which BRCA1 is regulated, especially its phosphorylation by the checkpoint kinase and transcriptional regulation. In this study, we report that severe γ irradiation induces rapid BRCA1 degradation. Our findings suggest that the degradation of BRCA1 by acute γ irradiation could be the one of mechanisms for initiating apoptosis. Furthermore, our results demonstrate that UPS plays an important role in mediating γ irradiation-induced BRCA1 turnover, which in turn facilitates apoptosis.

BRCA1 may guard the cell from genotoxic stress by preserving the cell from apoptosis

It has been reported that BRCA1 is associated with a large protein complex named the BRCA1-associated genome surveillance complex (BASC) that includes DNA damage detection molecules (e.g., ATM), DNA repair proteins (e.g., RAD50, MRE11, NBS1 and BLM), and mismatch repair proteins (e.g., MLH1, MSH2, and MSH6) [41]. These associations allow BRCA1 to participate in all processes required for DNA repair, such as detection of DNA damage, prevention of abnormal DNA replication, and replacement of damaged nucleotides. BRCA1 has also been reported to be involved in various DNA repair pathways including homologous recombination repair and nonhomologous end joining after ionizing radiation [42], [43] transcription-coupled repair of oxidative-induced DNA damage [44] and global genomic repair of UV-induced cyclobutane pyrimidine dimmers [45]. Given its important roles in DNA repair, it makes intuitive sense that BRCA1 could enhance cell survival after DNA damage by preventing apoptosis [46], [47]. For instance, reduction of BRCA1 expression results in increased sensitivity to the DNA damaging agents [48], whereas overexpression of BRCA1 increases resistance to the DNA damaging agents [49]. Moreover, reconstitution of BRCA1 in the BRCA1 mutant HCC1937 breast cancer line or BRCA1-null UWB1.289 ovarian cancer cell line resulted in a reduced sensitivity to the DNA damage chemotherapeutic agents or ionizing radiation [50], [51].

BRCA1 destruction by UPS is required for the onset of γ irradiation-induced apoptosis

Besides the physiological relevance to genotoxic stress response, consideration must be given to situations when damaged DNA is not able to be repaired and thus the cell undergoes apoptosis to avoid the accumulation of mutated cells. Our findings suggest that BRCA1 may function as a “barrier”, mitigating the effects of genotoxic tress by preventing the onset of apoptosis. Removal of BRCA1 seems to permit the initiation of apoptosis induced by acute γ irradiation. In this present study, DSBs caused by 20 Gy IR cannot be repaired as evidenced by the persistence of γ-H2AX foci in MEF cells, which eventually lead cells to undergo apoptosis. Our data for BRCA1 analyses by loss of function or gain of function strongly suggest that BRCA1 abundance alters the cellular susceptibility to apoptosis. Coincidently, many well-established anti-apoptotic proteins such as Bcl-2s(50;51), XIAPs[52], [53], [54], and the inhibitor of κB (IκB) [55], [56], [57] have been shown to be tightly regulated by the UPS. Degradation of these anti-apoptotic proteins by the pro-apoptotic signaling activated UPS results in onset of apoptosis. Finding of BRCA1 degradation in modulating onset of apoptosis suggests that BRCA1 may be an apoptotic-resisting component.

Mechanism by which BRCA1 is degraded

Protein stability of BRCA1 has been linked to the activity of proteasome, where supplementation of proteasomal inhibitors in the culture medium resulted in accumulation on BRCA1 [17]. Choudhury et al. demonstrated that BRCA1 protein levels fluctuate during cell cycle and alteration of BRCA1 is mediated by the UPS [19]. Biochemical dissection has revealed that BRCA1 can undergo ubiquitylation by a self-catalyzing mechanism via its ring domain [8], although we must note that the putative in vivo E3 ligase involved in regulating BRCA1 during the cell cycle remains unknown. Our data suggest the presence of an ubiquitin protein ligase mediating the genotoxic signaling for BRCA1 degradation. The results from mapping the degron suggest that the important region facilitating the BRCA1 degradation lies beyond the ring domain. The BRCT domain was thought to be important for the degradation event. This implies that the γ irradiation-induced BRCA1 ubiquitylation/degradation is not catalyzed by its auto-ubiquitylation, suggesting the presence of an additional E3 ligase that mediates BRCA1 degradation induced γ irradiation. The activity of such a ubiquitin protein ligase could be mediated by one or many different ligases involved in different stages of the cell cycle as reflected in BRCA1 oscillation during the cell cycle. To determine the potential E3 ligase involved in BRCA1 degradation, we have taken a biased approach by immunoblotting the BRCA1 IP complex purified from the cells exposed to γ irradiation with antibodies against several known E3 ligases, including SCF, APC, MDM2, Cul4A/DDB/ROC1 and COP1. We unfortunately have not presently identified any putative candidate by this strategy. To identify the E3 ligase governing the γ irradiation-induced BRCA1 degradation and further elucidate the mechanism of BRCA1 proteolysis, we have initiated a strategy using BRCA1-TAP purification by identifying BRCA1 complex in the presence of γ irradiation. This ongoing work could potentially address the mechanism by which BRCA1 is degraded by γ irradiation and provide additional insight as to how to therapeutically modulate BRCA1.

Supporting Information

Figure S1

Alteration of BRCA1 protein levels after exposure to low dose of γ irradiation. HeLa cells were treated with low dose γ irradiation (5 Gy). Cells were collected at different time points followed by exposure to γ irradiation. BRCA1 protein levels were monitored by immunoblotting using antibody against BRCA1. β-actin was measured as loading control. No obvious alteration of BRCA1 protein levels was observed in response to low dose γ irradiation.

(5.64 MB TIF)


We thank A. Weissman and A. D'Andrea for cDNA clones. We appreciate B. Koberle for assisting us on clonogenic cell survival analysis. Xuwan Liu helped us with RT-PCR analysis. We are grateful to Dr. Rick Wood and members of our laboratory for the critical reading of the manuscript. We appreciate Drs. Dan Finley, Wade Harper and Ray Deshaies for helpful discussions.


Competing Interests: The authors have declared that no competing interests exist.

Funding: This work was supported by National Institutes of Health grants CA115943. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


1. Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science. 1994;266:120–122. [PubMed]
2. Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer. 2004;4:665–676. [PubMed]
3. Cable PL, Wilson CA, Calzone FJ, Rauscher FJ, 3rd, Scully R, et al. Novel consensus DNA-binding sequence for BRCA1 protein complexes. Mol Carcinog. 2003;38:85–96. [PubMed]
4. Deng CX, Brodie SG. Roles of BRCA1 and its interacting proteins. Bioessays. 2000;22:728–737. [PubMed]
5. Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006;25:5864–5874. [PubMed]
6. Scully R. Interactions between BRCA proteins and DNA structure. Exp Cell Res. 2001;264:67–73. [PubMed]
7. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet. 1996;14:430–440. [PubMed]
8. Baer R, Ludwig T. The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr Opin Genet Dev. 2002;12:86–91. [PubMed]
9. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A. 1999;96:11364–11369. [PubMed]
10. Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001;98:5134–5139. [PubMed]
11. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001;276:14537–14540. [PubMed]
12. Chen Y, Farmer AA, Chen CF, Jones DC, Chen PL, et al. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 1996;56:3168–3172. [PubMed]
13. Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997;90:425–435. [PubMed]
14. Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 2000;14:2989–3002. [PubMed]
15. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999;286:1162–1166. [PubMed]
16. Wang Q, Zhang H, Fishel R, Greene MI. BRCA1 and cell signaling. Oncogene. 2000;19:6152–6158. [PubMed]
17. Choi YH. Proteasome-mediated degradation of BRCA1 protein in MCF-7 human breast cancer cells. Int J Oncol. 2001;19:687–693. [PubMed]
18. Rodriguez JA, Au WW, Henderson BR. Cytoplasmic mislocalization of BRCA1 caused by cancer-associated mutations in the BRCT domain. Exp Cell Res. 2004;293:14–21. [PubMed]
19. Choudhury AD, Xu H, Baer R. Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression. J Biol Chem. 2004;279:33909–33918. [PubMed]
20. Mueller CR, Roskelley CD. Regulation of BRCA1 expression and its relationship to sporadic breast cancer. Breast Cancer Res. 2003;5:45–52. [PMC free article] [PubMed]
21. Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4:814–819. [PubMed]
22. Boulton SJ, Martin JS, Polanowska J, Hill DE, Gartner A, et al. BRCA1/BARD1 orthologs required for DNA repair in Caenorhabditis elegans. Curr Biol. 2004;14:33–39. [PubMed]
23. Polanowska J, Martin JS, Garcia-Muse T, Petalcorin MI, Boulton SJ. A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. Embo J. 2006;25:2178–2188. [PubMed]
24. Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD. Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene. 2004;23:2009–2015. [PubMed]
25. Chen A, Kleiman FE, Manley JL, Ouchi T, Pan ZQ. Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. J Biol Chem. 2002;277:22085–22092. [PubMed]
26. Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, et al. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell. 2005;19:607–618. [PubMed]
27. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, et al. Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. Embo J. 2002;21:5911–5920. [PubMed]
28. Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, et al. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature. 2003;426:87–91. [PubMed]
29. Jacquemont C, Taniguchi T. The Fanconi anemia pathway and ubiquitin. BMC Biochem. 2007;8(Suppl 1):S10. [PMC free article] [PubMed]
30. Morris JR, Solomon E. BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet. 2004;13:807–817. [PubMed]
31. Boulton SJ. BRCA1-mediated ubiquitylation. Cell Cycle. 2006;5:1481–1486. [PubMed]
32. Mallery DL, Vandenberg CJ, Hiom K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. Embo J. 2002;21:6755–6762. [PubMed]
33. Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell. 2003;12:1087–1099. [PubMed]
34. Wan Y, Liu X, Kirschner MW. The anaphase-promoting complex mediates TGF-beta signaling by targeting SnoN for destruction. Mol Cell. 2001;8:1027–1039. [PubMed]
35. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–569. [PubMed]
36. Liu W, Wu G, Li W, Lobur D, Wan Y. Cdh1-anaphase-promoting complex targets Skp2 for destruction in transforming growth factor beta-induced growth inhibition. Mol Cell Biol. 2007;27:2967–2979. [PMC free article] [PubMed]
37. Ayad NG, Rankin S, Ooi D, Rape M, Kirschner MW. Identification of ubiquitin ligase substrates by in vitro expression cloning. Methods Enzymol. 2005;399:404–414. [PubMed]
38. Zhan Q, Jin S, Ng B, Plisket J, Shangary S, et al. Caspase-3 mediated cleavage of BRCA1 during UV-induced apoptosis. Oncogene. 2002;21:5335–5345. [PubMed]
39. Koberle B, Roginskaya V, Wood RD. XPA protein as a limiting factor for nucleotide excision repair and UV sensitivity in human cells. DNA Repair (Amst) 2006;5:641–648. [PubMed]
40. Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 2007;8:735–748. [PubMed]
41. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000;14:927–939. [PubMed]
42. Scully R, Chen J, Plug A, Xiao Y, Weaver D, et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997;88:265–275. [PubMed]
43. Zhong Q, Chen CF, Li S, Chen Y, Wang CC, et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science. 1999;285:747–750. [PubMed]
44. Gowen LC, Avrutskaya AV, Latour AM, Koller BH, Leadon SA. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science. 1998;281:1009–1012. [PubMed]
45. Hartman AR, Ford JM. BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet. 2002;32:180–184. [PubMed]
46. Setlow RB. Shedding light on proteins, nucleic acids, cells, humans and fish. Mutat Res. 2002;511:1–14. [PubMed]
47. MacLachlan TK, Takimoto R, El-Deiry WS. BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Mol Cell Biol. 2002;22:4280–4292. [PMC free article] [PubMed]
48. Lafarge S, Sylvain V, Ferrara M, Bignon YJ. Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene. 2001;20:6597–6606. [PubMed]
49. Sylvain V, Lafarge S, Bignon YJ. Dominant-negative activity of a Brca1 truncation mutant: effects on proliferation, tumorigenicity in vivo, and chemosensitivity in a mouse ovarian cancer cell line. Int J Oncol. 2002;20:845–853. [PubMed]
50. Quinn JE, Kennedy RD, Mullan PB, Gilmore PM, Carty M, et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res. 2003;63:6221–6228. [PubMed]
51. DelloRusso C, Welcsh PL, Wang W, Garcia RL, King MC, et al. Functional characterization of a novel BRCA1-null ovarian cancer cell line in response to ionizing radiation. Mol Cancer Res. 2007;5:35–45. [PubMed]
52. Schimmer AD, Dalili S, Batey RA, Riedl SJ. Targeting XIAP for the treatment of malignancy. Cell Death Differ. 2006;13:179–188. [PubMed]
53. Martin SJ. Destabilizing influences in apoptosis: sowing the seeds of IAP destruction. Cell. 2002;109:793–796. [PubMed]
54. MacFarlane M, Merrison W, Bratton SB, Cohen GM. Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem. 2002;277:36611–36616. [PubMed]
55. Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol. 2005;7:758–765. [PMC free article] [PubMed]
56. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature. 2003;424:801–805. [PubMed]
57. Jesenberger V, Jentsch S. Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol. 2002;3:112–121. [PubMed]

Articles from PLoS ONE are provided here courtesy of Public Library of Science