PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of mbcLink to Publisher's site
 
Mol Biol Cell. 1995 June; 6(6): 685–696.
PMCID: PMC301229

Interspecies conservation of outer arm dynein intermediate chain sequences defines two intermediate chain subclasses.

Abstract

Immunological analysis showed that antibodies against the intermediate chains (ICs) IC2 and IC3 of sea urchin outer arm dynein specifically cross-reacted with intermediate chains IC78 and IC69, respectively, of Chlamydomonas outer arm dynein. In contrast, no specific cross-reactivity with any Chlamydomonas outer arm polypeptide was observed using antibody against IC1 of sea urchin outer arm dynein. To learn more about the relationships between the different ICs, overlapping cDNAs encoding all of IC2 and IC3 of sea urchin were isolated and sequenced. Comparison of these sequences with those previously obtained for the Chlamydomonas ICs revealed that, although all four chains are homologous, sea urchin IC2 is much more closely related to Chlamydomonas IC78 (45.8% identity), and sea urchin IC3 is much more closely related to Chlamydomonas IC69 (48.5% identity), than either sea urchin chain is related to the other (23.5% identity). For homologous pairs, the similarities extend throughout the full lengths of the chains. Regions of similarity between all four ICs and the IC (IC74) of cytoplasmic dynein, located in the C-terminal halves of the chains, are due primarily to conservation of the WD repeats present in all of these ICs. This is the first demonstration that structural differences between individual ICs within an outer arm dynein have been highly conserved in the dyneins of distantly related species. The results provide a basis for the subclassification of these chains.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bell CW, Fronk E, Gibbons IR. Polypeptide subunits of dynein 1 from sea urchin sperm flagella. J Supramol Struct. 1979;11(3):311–317. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Gagnon C, White D, Huitorel P, Cosson J. A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes. Mol Biol Cell. 1994 Sep;5(9):1051–1063. [PMC free article] [PubMed]
  • Gatti JL, King SM, Moss AG, Witman GB. Outer arm dynein from trout spermatozoa. Purification, polypeptide composition, and enzymatic properties. J Biol Chem. 1989 Jul 5;264(19):11450–11457. [PubMed]
  • Higgins DG. CLUSTAL V: multiple alignment of DNA and protein sequences. Methods Mol Biol. 1994;25:307–318. [PubMed]
  • Kamiya R. Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii. J Cell Biol. 1988 Dec;107(6 Pt 1):2253–2258. [PMC free article] [PubMed]
  • King SM, Gatti JL, Moss AG, Witman GB. Outer-arm dynein from trout spermatozoa: substructural organization. Cell Motil Cytoskeleton. 1990;16(4):266–278. [PubMed]
  • King SM, Otter T, Witman GB. Characterization of monoclonal antibodies against Chlamydomonas flagellar dyneins by high-resolution protein blotting. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4717–4721. [PubMed]
  • King SM, Wilkerson CG, Witman GB. The Mr 78,000 intermediate chain of Chlamydomonas outer arm dynein interacts with alpha-tubulin in situ. J Biol Chem. 1991 May 5;266(13):8401–8407. [PubMed]
  • King SM, Witman GB. Localization of an intermediate chain of outer arm dynein by immunoelectron microscopy. J Biol Chem. 1990 Nov 15;265(32):19807–19811. [PubMed]
  • Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. [PubMed]
  • Mierendorf RC, Percy C, Young RA. Gene isolation by screening lambda gt11 libraries with antibodies. Methods Enzymol. 1987;152:458–469. [PubMed]
  • Mitchell DR, Kang Y. Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene. J Cell Biol. 1991 May;113(4):835–842. [PMC free article] [PubMed]
  • Mitchell DR, Kang Y. Reversion analysis of dynein intermediate chain function. J Cell Sci. 1993 Aug;105(Pt 4):1069–1078. [PubMed]
  • Mitchell DR, Rosenbaum JL. Protein-protein interactions in the 18S ATPase of Chlamydomonas outer dynein arms. Cell Motil Cytoskeleton. 1986;6(5):510–520. [PubMed]
  • Moss AG, Sale WS, Fox LA, Witman GB. The alpha subunit of sea urchin sperm outer arm dynein mediates structural and rigor binding to microtubules. J Cell Biol. 1992 Sep;118(5):1189–1200. [PMC free article] [PubMed]
  • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994 Sep 22;371(6495):297–300. [PubMed]
  • Paschal BM, Mikami A, Pfister KK, Vallee RB. Homology of the 74-kD cytoplasmic dynein subunit with a flagellar dynein polypeptide suggests an intracellular targeting function. J Cell Biol. 1992 Sep;118(5):1133–1143. [PMC free article] [PubMed]
  • Porter ME, Johnson KA. Characterization of the ATP-sensitive binding of Tetrahymena 30 S dynein to bovine brain microtubules. J Biol Chem. 1983 May 25;258(10):6575–6581. [PubMed]
  • Porter ME, Power J, Dutcher SK. Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms. J Cell Biol. 1992 Sep;118(5):1163–1176. [PMC free article] [PubMed]
  • Sale WS, Fox LA. Isolated beta-heavy chain subunit of dynein translocates microtubules in vitro. J Cell Biol. 1988 Nov;107(5):1793–1797. [PMC free article] [PubMed]
  • Sale WS, Goodenough UW, Heuser JE. The substructure of isolated and in situ outer dynein arms of sea urchin sperm flagella. J Cell Biol. 1985 Oct;101(4):1400–1412. [PMC free article] [PubMed]
  • Smith EF, Sale WS. Microtubule binding and translocation by inner dynein arm subtype I1. Cell Motil Cytoskeleton. 1991;18(4):258–268. [PubMed]
  • Tang WJ, Bell CW, Sale WS, Gibbons IR. Structure of the dynein-1 outer arm in sea urchin sperm flagella. I. Analysis by separation of subunits. J Biol Chem. 1982 Jan 10;257(1):508–515. [PubMed]
  • van der Voorn L, Ploegh HL. The WD-40 repeat. FEBS Lett. 1992 Jul 28;307(2):131–134. [PubMed]
  • Wilkerson CG, King SM, Koutoulis A, Pazour GJ, Witman GB. The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein isa WD-repeat protein required for arm assembly. J Cell Biol. 1995 Apr;129(1):169–178. [PMC free article] [PubMed]
  • Witman GB, Plummer J, Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol. 1978 Mar;76(3):729–747. [PMC free article] [PubMed]

Articles from Molecular Biology of the Cell are provided here courtesy of American Society for Cell Biology