PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3132.
Published online 2010 November 13. doi:  10.1107/S1600536810045277
PMCID: PMC3011805

2-(5,6-Dibromo-7-methyl-3H-imidazo[4,5-b]pyridin-2-yl)phenol

Abstract

In the title compound, C13H9Br2N3O, the mol­ecular skeleton, influenced by an intra­molecular O—H(...)N hydrogen bond, is roughly planar, with a mean deviation of 0.033 Å. In the crystal, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains propagating in [100]. Weak inter­molecular π–π inter­actions [centroid–centroid distances = 3.760 (3) and 3.723 (3) Å] further consolidate the packing.

Related literature

For background to the use of imidazole and its derivatives in transition metal complexes, see: Huang et al. (2004 [triangle]). For related structures, see: Eltayeb et al. (2009 [triangle]); Xiao et al. (2009 [triangle]); Elerman & Kabak (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3132-scheme1.jpg

Experimental

Crystal data

  • C13H9Br2N3O
  • M r = 383.05
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3132-efi1.jpg
  • a = 13.181 (5) Å
  • b = 8.494 (3) Å
  • c = 22.692 (8) Å
  • V = 2540.5 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.38 mm−1
  • T = 293 K
  • 0.31 × 0.28 × 0.24 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a [triangle]) T min = 0.243, T max = 0.310
  • 11656 measured reflections
  • 2234 independent reflections
  • 1706 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.138
  • S = 1.08
  • 2234 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.88 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045277/cv2784sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045277/cv2784Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Due to excellent coordination abilities the imidazole and its derivatives have already been introduced into the transition metal complexes (Huang et al., 2004). Herewith we present the title compound (I) - a new imidazole derivative.

In (I) (Fig. 1), intramolecular O—H···N hydrogen bond (Table 2) influence the molecular conformation, so all non-H atoms are nearly coplanar with the mean deviation of 0.033 Å. The dihedral angle between the 5,6-dibromo-7-methyl-3H-imidazo[4,5-b]pyridine plane and the phenol plane is 2.1 (2) °. The bond lengths and angles are normal and comparable to those observed in the reported benzimidazole compounds (Xiao et al., 2009; Eltayeb et al., 2009; Elerman & Kabak 1997).

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into chains propagated in direction [100]. Weak intermolecular π—π interactions (Table 1) consolidate further the crystal packing.

Experimental

The title compound was synthesized by the reaction of 4-methyl-2,3-diamino-5,6-dibromopyridine and 2-hydroxybenzaldehyde with the ratio 1:1 in ethanol. After the mixture was refluxed sevral hours, the resulting clear yellow solution was allowed to evaporate slowly in air, and orange-yellow block-like crystals suitable for X-ray diffraction were obtained with a yield 47% about ten days later.

Refinement

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97 with C—H distances of 0.93 and 0.96 Å, and were refined as riding, with Uiso(H) = 1.2-1.5Ueq(C). H atoms bonded to O and N atoms were found from difference Fourier maps with the bond lengths restrained to 0.82 and 0.96 Å, respectively, and were refined as riding, with Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labelling scheme and 30% probabilty displament ellipsoids.

Crystal data

C13H9Br2N3OF(000) = 1488
Mr = 383.05Dx = 2.003 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1452 reflections
a = 13.181 (5) Åθ = 2.9–24.6°
b = 8.494 (3) ŵ = 6.38 mm1
c = 22.692 (8) ÅT = 293 K
V = 2540.5 (16) Å3Block, orange–yellow
Z = 80.31 × 0.28 × 0.24 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2234 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)h = −15→15
Tmin = 0.243, Tmax = 0.310k = −9→10
11656 measured reflectionsl = −24→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0692P)2 + 6.558P] where P = (Fo2 + 2Fc2)/3
2234 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.88 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.27968 (6)1.22305 (9)0.48970 (3)0.0618 (3)
Br20.51701 (6)1.19032 (9)0.54180 (3)0.0669 (3)
O10.0310 (3)0.7707 (6)0.73898 (19)0.0541 (12)
H10.06140.81110.71130.081*
N10.3413 (3)0.8522 (5)0.7102 (2)0.0380 (10)
H1A0.40110.82150.73060.046*
N20.1806 (3)0.8887 (5)0.68102 (19)0.0365 (10)
N30.4280 (4)1.0090 (7)0.6313 (2)0.0615 (15)
C10.3468 (4)0.9445 (6)0.6601 (2)0.0348 (12)
C20.2452 (4)0.9659 (6)0.6416 (2)0.0350 (12)
C30.2226 (4)1.0517 (7)0.5909 (2)0.0432 (13)
C40.3060 (4)1.1146 (7)0.5612 (2)0.0414 (13)
C50.4049 (4)1.0950 (6)0.5811 (2)0.0400 (13)
C60.1127 (5)1.0806 (9)0.5643 (3)0.0680 (19)
H6A0.09231.18730.57170.102*
H6B0.06531.00980.58250.102*
H6C0.11401.06210.52260.102*
C70.2410 (4)0.8221 (6)0.7213 (2)0.0357 (12)
C80.2041 (4)0.7275 (6)0.7696 (2)0.0354 (12)
C90.0988 (5)0.7064 (7)0.7768 (3)0.0431 (13)
C100.0636 (5)0.6169 (8)0.8237 (3)0.0578 (17)
H10−0.00570.60220.82880.069*
C110.1315 (5)0.5488 (8)0.8632 (3)0.0604 (18)
H110.10740.48950.89470.072*
C120.2329 (5)0.5690 (8)0.8558 (3)0.0536 (16)
H120.27790.52260.88210.064*
C130.2693 (4)0.6560 (7)0.8104 (3)0.0453 (14)
H130.33900.66860.80630.054*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0851 (6)0.0621 (5)0.0383 (4)0.0019 (4)−0.0058 (3)0.0082 (3)
Br20.0640 (5)0.0757 (5)0.0609 (5)−0.0265 (4)0.0124 (3)0.0054 (4)
O10.029 (2)0.079 (3)0.054 (3)0.0054 (19)0.0065 (19)0.007 (2)
N10.027 (2)0.048 (3)0.039 (3)−0.0008 (19)−0.0055 (19)0.001 (2)
N20.028 (2)0.045 (3)0.037 (3)0.0009 (18)−0.0012 (19)−0.002 (2)
N30.056 (3)0.068 (4)0.060 (4)−0.006 (3)0.003 (3)−0.005 (3)
C10.029 (3)0.043 (3)0.033 (3)−0.004 (2)0.000 (2)−0.003 (2)
C20.033 (3)0.040 (3)0.032 (3)−0.001 (2)0.000 (2)−0.004 (2)
C30.048 (3)0.046 (3)0.036 (3)0.007 (3)−0.002 (3)−0.005 (3)
C40.050 (3)0.041 (3)0.034 (3)−0.002 (3)0.000 (3)−0.003 (2)
C50.045 (3)0.040 (3)0.036 (3)−0.007 (2)0.006 (3)0.000 (2)
C60.071 (5)0.076 (5)0.057 (4)0.012 (4)0.011 (4)0.010 (4)
C70.031 (3)0.040 (3)0.036 (3)−0.001 (2)0.004 (2)−0.007 (2)
C80.038 (3)0.034 (3)0.034 (3)−0.002 (2)0.004 (2)−0.004 (2)
C90.044 (3)0.044 (3)0.041 (3)0.001 (3)0.009 (3)−0.006 (3)
C100.054 (4)0.061 (4)0.059 (4)−0.008 (3)0.023 (3)−0.001 (3)
C110.082 (5)0.051 (4)0.048 (4)−0.004 (3)0.018 (3)0.006 (3)
C120.066 (4)0.052 (4)0.043 (4)0.001 (3)−0.004 (3)0.008 (3)
C130.042 (3)0.047 (3)0.047 (4)−0.001 (3)−0.006 (3)0.003 (3)

Geometric parameters (Å, °)

Br1—C41.897 (6)C4—C51.389 (8)
Br2—C51.907 (5)C6—H6A0.9600
O1—C91.354 (7)C6—H6B0.9600
O1—H10.8200C6—H6C0.9600
N1—C71.369 (7)C7—C81.442 (8)
N1—C11.382 (7)C8—C131.402 (8)
N1—H1A0.9504C8—C91.408 (8)
N2—C71.338 (7)C9—C101.388 (8)
N2—C21.398 (7)C10—C111.392 (9)
N3—C11.370 (7)C10—H100.9300
N3—C51.387 (8)C11—C121.358 (9)
C1—C21.415 (7)C11—H110.9300
C2—C31.394 (8)C12—C131.355 (8)
C3—C41.396 (8)C12—H120.9300
C3—C61.589 (9)C13—H130.9300
Cg1···Cg2i3.760 (3)Cg1···Cg3ii3.723 (3)
C9—O1—H1109.5C3—C6—H6C109.5
C7—N1—C1107.9 (4)H6A—C6—H6C109.5
C7—N1—H1A131.3H6B—C6—H6C109.5
C1—N1—H1A120.8N2—C7—N1111.7 (5)
C7—N2—C2105.9 (4)N2—C7—C8123.6 (5)
C1—N3—C5115.6 (5)N1—C7—C8124.7 (5)
N3—C1—N1131.4 (5)C13—C8—C9118.1 (5)
N3—C1—C2123.1 (5)C13—C8—C7122.4 (5)
N1—C1—C2105.6 (4)C9—C8—C7119.5 (5)
C3—C2—N2130.1 (5)O1—C9—C10119.1 (6)
C3—C2—C1121.0 (5)O1—C9—C8121.6 (5)
N2—C2—C1109.0 (5)C10—C9—C8119.3 (6)
C2—C3—C4115.5 (5)C9—C10—C11120.4 (6)
C2—C3—C6126.1 (5)C9—C10—H10119.8
C4—C3—C6118.4 (5)C11—C10—H10119.8
C5—C4—C3122.4 (5)C12—C11—C10120.0 (6)
C5—C4—Br1120.5 (4)C12—C11—H11120.0
C3—C4—Br1117.1 (4)C10—C11—H11120.0
N3—C5—C4122.5 (5)C13—C12—C11120.8 (6)
N3—C5—Br2115.9 (4)C13—C12—H12119.6
C4—C5—Br2121.6 (4)C11—C12—H12119.6
C3—C6—H6A109.5C12—C13—C8121.5 (5)
C3—C6—H6B109.5C12—C13—H13119.3
H6A—C6—H6B109.5C8—C13—H13119.3

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1/2, y−1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iii0.951.902.839 (6)171
O1—H1···N20.821.842.573 (6)149

Symmetry codes: (iii) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2784).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Elerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372–374.
  • Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614. [PMC free article] [PubMed]
  • Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc.126, 13218–13219. [PubMed]
  • Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [PubMed]
  • Xiao, H.-Q., Zhang, M.-Z. & Wang, W. (2009). Acta Cryst. E65, o1256. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography