PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3227.
Published online 2010 November 20. doi:  10.1107/S1600536810046994
PMCID: PMC3011801

1-Allyl-3-methyl-3′,5′-diphenyl­spiro­[quinoxaline-2(1H),2′(3′H)-[1,3,4]thia­diazole]

Abstract

In the title spiro compound, C25H22N4S, the planar quinoxaline (r.m.s. deviation = 0.070 Å) and planar thia­diazole (r.m.s. deviation = 0.060 Å) ring systems share a common C atom; their mean planes are aligned at 89.7 (1)°. The thia­zole ring possesses two aromatic ring substituents and is nearly coplanar with these rings [the dihedral angles between the thia­diazole and phenyl rings are 5.7 (1) and 10.7 (1)°]. The allyl unit is disordered over two positions in a 0.65 (1):0.35 (1) ratio.

Related literature

For pharmacologically active compounds derived from the 1,3-dipolar addition of diphenyl­nitrilimine to double bonds, see: Ahabchane & Essassi (2000 [triangle]); Canara et al. (2004 [triangle]); Ghomsi et al. (2004 [triangle]); Mustaphil et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3227-scheme1.jpg

Experimental

Crystal data

  • C25H22N4S
  • M r = 410.53
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3227-efi1.jpg
  • a = 7.9201 (1) Å
  • b = 10.0713 (1) Å
  • c = 13.6642 (2) Å
  • α = 78.296 (1)°
  • β = 81.277 (1)°
  • γ = 89.826 (1)°
  • V = 1054.50 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 293 K
  • 0.40 × 0.10 × 0.10 mm

Data collection

  • Bruker X8 APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.818, T max = 0.862
  • 38334 measured reflections
  • 8514 independent reflections
  • 5771 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.164
  • S = 1.03
  • 8514 reflections
  • 291 parameters
  • 28 restraints
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046994/nk2073sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046994/nk2073Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

In our studies on pharmacologically active compounds, we have used diphenylnitrilimine to undergo 1,3-dipolar additions to double bonds (Ahabchane & Essassi, 2000; Canara et al., 2004; Ghomsi et al., 2004; Mustaphil et al., 2005). In the present study, this compound reacts with an aromatic thione to yield the title spiro compound (Scheme I, Fig. 1). The quinoxaline and the thiadiazole ring systems share a common C atom; their mean planes are aligned at 89.7 (1)°.

Experimental

To a solution of 1-allyl-3-methylquinoxaline-2-thione (1.00 g, 4.62 mmol) and diphenylnitrilimine (1.28 g, 5.55 mmol) in THF (20 ml) was added triethylamine (0.78 ml. 5.55 mmol). The mixture was heated for 24 h. The precipitate was recovered by filtration and was separated by chromatography on silica gel (hexane/ethyl acetate: 9/1). The title compound was obtained as yellow crystals upon evaporation of the solvent.

Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C). The allyl unit is disordered over two positions in a 65 (1):35 (1) ratio.

Figures

Fig. 1.
Displacement ellipsoid plot of C25H22N4S at the 50% probability level; hydrogen atoms are drawn as arbitrary radius. The minor disorder component is not shown.

Crystal data

C25H22N4SZ = 2
Mr = 410.53F(000) = 432
Triclinic, P1Dx = 1.293 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9201 (1) ÅCell parameters from 9958 reflections
b = 10.0713 (1) Åθ = 2.3–33.0°
c = 13.6642 (2) ŵ = 0.17 mm1
α = 78.296 (1)°T = 293 K
β = 81.277 (1)°Prism, yellow
γ = 89.826 (1)°0.40 × 0.10 × 0.10 mm
V = 1054.50 (2) Å3

Data collection

Bruker X8 APEXII diffractometer8514 independent reflections
Radiation source: fine-focus sealed tube5771 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 33.9°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.818, Tmax = 0.862k = −15→15
38334 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0836P)2 + 0.1531P] where P = (Fo2 + 2Fc2)/3
8514 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.32 e Å3
28 restraintsΔρmin = −0.20 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.55728 (4)0.85155 (3)0.59838 (2)0.04746 (11)
N10.50074 (13)0.71267 (12)0.79755 (8)0.0449 (2)
N20.15933 (13)0.76834 (10)0.77459 (8)0.0433 (2)
N30.50993 (16)0.59101 (10)0.66315 (9)0.0507 (3)
N40.64611 (15)0.60663 (10)0.58661 (9)0.0470 (2)
C10.8280 (5)0.5283 (5)0.9283 (4)0.0709 (12)0.654 (11)
H1A0.90400.59820.92900.085*0.654 (11)
H1B0.83820.44250.96740.085*0.654 (11)
C20.7059 (6)0.5510 (3)0.8718 (4)0.0527 (9)0.654 (11)
H20.63140.47960.87230.063*0.654 (11)
C1'0.8401 (10)0.5022 (8)0.8777 (11)0.085 (3)0.346 (11)
H1'10.90900.51890.81480.102*0.346 (11)
H1'20.86500.43200.92870.102*0.346 (11)
C2'0.7060 (13)0.5787 (8)0.8948 (4)0.0579 (19)0.346 (11)
H2'0.63380.56560.95650.070*0.346 (11)
C30.68125 (17)0.68768 (17)0.80623 (11)0.0584 (4)
H3A0.72620.75830.83480.070*
H3B0.74560.69240.73930.070*
C40.39793 (16)0.76799 (11)0.86969 (9)0.0406 (2)
C50.4548 (2)0.79361 (17)0.95621 (12)0.0577 (3)
H50.56700.77610.96620.069*
C60.3444 (3)0.84499 (19)1.02685 (13)0.0684 (4)
H60.38400.86231.08390.082*
C70.1772 (3)0.87124 (17)1.01491 (12)0.0649 (4)
H70.10430.90531.06340.078*
C80.11982 (19)0.84633 (14)0.93028 (11)0.0527 (3)
H80.00710.86370.92160.063*
C90.22789 (15)0.79542 (11)0.85726 (9)0.0400 (2)
C100.25755 (16)0.72698 (12)0.70458 (10)0.0432 (2)
C110.1835 (2)0.69551 (19)0.61697 (13)0.0644 (4)
H11A0.06550.71930.62260.097*
H11B0.19240.60040.61720.097*
H11C0.24520.74670.55490.097*
C120.44934 (15)0.71136 (11)0.70212 (9)0.0396 (2)
C130.44801 (17)0.45774 (11)0.70791 (10)0.0446 (3)
C140.3295 (2)0.43079 (15)0.79643 (12)0.0581 (4)
H140.29140.50070.82870.070*
C150.2686 (2)0.29836 (16)0.83610 (14)0.0659 (4)
H150.18790.28070.89450.079*
C160.3252 (2)0.19377 (15)0.79093 (16)0.0700 (5)
H160.28420.10560.81850.084*
C170.4432 (2)0.22055 (14)0.70430 (15)0.0648 (4)
H170.48250.14960.67360.078*
C180.50517 (19)0.35175 (13)0.66164 (12)0.0513 (3)
H180.58430.36840.60250.062*
C190.68575 (16)0.73197 (11)0.54723 (9)0.0412 (2)
C200.82935 (16)0.77223 (12)0.46545 (9)0.0411 (2)
C210.92074 (19)0.67363 (16)0.42316 (11)0.0535 (3)
H210.89110.58230.44740.064*
C221.0549 (2)0.7115 (2)0.34546 (13)0.0680 (4)
H221.11480.64560.31690.082*
C231.1010 (2)0.8468 (2)0.30971 (13)0.0704 (5)
H231.19240.87160.25760.085*
C241.0122 (2)0.94469 (19)0.35095 (13)0.0668 (4)
H241.04321.03580.32670.080*
C250.87667 (19)0.90801 (14)0.42849 (11)0.0538 (3)
H250.81670.97470.45610.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0582 (2)0.03341 (13)0.04398 (17)0.00401 (11)0.00390 (13)−0.00090 (10)
N10.0345 (5)0.0579 (6)0.0390 (5)0.0047 (4)−0.0036 (4)−0.0039 (4)
N20.0388 (5)0.0427 (5)0.0474 (5)0.0021 (4)−0.0070 (4)−0.0069 (4)
N30.0578 (6)0.0322 (4)0.0531 (6)0.0008 (4)0.0132 (5)−0.0036 (4)
N40.0507 (6)0.0375 (4)0.0478 (6)0.0013 (4)0.0057 (5)−0.0070 (4)
C10.0616 (17)0.0673 (18)0.077 (2)−0.0016 (14)−0.0272 (18)0.0131 (17)
C20.0502 (14)0.0530 (13)0.0565 (19)0.0043 (11)−0.0175 (15)−0.0084 (13)
C1'0.071 (4)0.072 (4)0.103 (6)0.016 (3)−0.015 (4)0.002 (4)
C2'0.056 (3)0.074 (4)0.047 (3)0.008 (3)−0.008 (2)−0.018 (2)
C30.0351 (6)0.0824 (10)0.0485 (7)0.0064 (6)−0.0035 (5)0.0055 (7)
C40.0419 (6)0.0393 (5)0.0373 (5)−0.0035 (4)−0.0028 (4)−0.0028 (4)
C50.0560 (8)0.0696 (9)0.0488 (7)−0.0062 (7)−0.0127 (6)−0.0113 (6)
C60.0862 (12)0.0760 (10)0.0476 (8)−0.0061 (9)−0.0109 (8)−0.0226 (7)
C70.0810 (11)0.0617 (8)0.0523 (8)0.0085 (8)0.0023 (7)−0.0215 (7)
C80.0535 (7)0.0476 (6)0.0539 (7)0.0087 (5)0.0015 (6)−0.0106 (5)
C90.0413 (6)0.0346 (5)0.0412 (6)−0.0003 (4)−0.0016 (4)−0.0043 (4)
C100.0432 (6)0.0420 (5)0.0447 (6)0.0019 (4)−0.0094 (5)−0.0079 (4)
C110.0673 (10)0.0751 (10)0.0600 (9)0.0064 (8)−0.0238 (8)−0.0249 (8)
C120.0429 (6)0.0347 (4)0.0386 (5)0.0029 (4)−0.0020 (4)−0.0046 (4)
C130.0450 (6)0.0344 (5)0.0506 (7)−0.0022 (4)−0.0066 (5)−0.0004 (4)
C140.0583 (8)0.0463 (6)0.0601 (8)−0.0068 (6)0.0047 (7)0.0009 (6)
C150.0617 (9)0.0574 (8)0.0671 (9)−0.0179 (7)−0.0073 (8)0.0125 (7)
C160.0749 (11)0.0423 (6)0.0889 (12)−0.0179 (7)−0.0306 (10)0.0090 (7)
C170.0720 (10)0.0383 (6)0.0876 (12)−0.0024 (6)−0.0275 (9)−0.0097 (7)
C180.0541 (7)0.0392 (5)0.0615 (8)−0.0002 (5)−0.0122 (6)−0.0099 (5)
C190.0466 (6)0.0377 (5)0.0369 (5)0.0017 (4)−0.0022 (4)−0.0051 (4)
C200.0414 (6)0.0463 (6)0.0342 (5)−0.0002 (4)−0.0053 (4)−0.0053 (4)
C210.0511 (7)0.0577 (7)0.0533 (7)0.0037 (6)−0.0035 (6)−0.0185 (6)
C220.0553 (9)0.0885 (12)0.0608 (9)0.0084 (8)0.0044 (7)−0.0265 (9)
C230.0495 (8)0.1031 (14)0.0499 (8)−0.0017 (8)0.0073 (6)−0.0061 (8)
C240.0571 (9)0.0690 (9)0.0609 (9)−0.0085 (7)0.0044 (7)0.0082 (7)
C250.0539 (8)0.0477 (6)0.0519 (7)−0.0015 (5)0.0028 (6)0.0000 (5)

Geometric parameters (Å, °)

S1—C191.7585 (12)C8—C91.3917 (17)
S1—C121.8872 (12)C8—H80.9300
N1—C41.3863 (15)C10—C111.4986 (19)
N1—C121.4263 (16)C10—C121.5227 (17)
N1—C31.4692 (16)C11—H11A0.9600
N2—C101.2757 (16)C11—H11B0.9600
N2—C91.3991 (17)C11—H11C0.9600
N3—N41.3689 (15)C13—C181.3887 (18)
N3—C131.4128 (15)C13—C141.394 (2)
N3—C121.4709 (14)C14—C151.391 (2)
N4—C191.2874 (15)C14—H140.9300
C1—C21.318 (3)C15—C161.367 (3)
C1—H1A0.9300C15—H150.9300
C1—H1B0.9300C16—C171.373 (3)
C2—C31.512 (3)C16—H160.9300
C2—H20.9300C17—C181.390 (2)
C1'—C2'1.330 (5)C17—H170.9300
C1'—H1'10.9300C18—H180.9300
C1'—H1'20.9300C19—C201.4629 (17)
C2'—C31.496 (4)C20—C251.3896 (18)
C2'—H2'0.9300C20—C211.3948 (18)
C3—H3A0.9700C21—C221.378 (2)
C3—H3B0.9700C21—H210.9300
C4—C51.3975 (19)C22—C231.381 (3)
C4—C91.4025 (17)C22—H220.9300
C5—C61.381 (2)C23—C241.374 (3)
C5—H50.9300C23—H230.9300
C6—C71.377 (3)C24—C251.382 (2)
C6—H60.9300C24—H240.9300
C7—C81.373 (2)C25—H250.9300
C7—H70.9300
C19—S1—C1289.97 (5)C10—C11—H11A109.5
C4—N1—C12120.78 (10)C10—C11—H11B109.5
C4—N1—C3120.12 (11)H11A—C11—H11B109.5
C12—N1—C3117.17 (10)C10—C11—H11C109.5
C10—N2—C9119.02 (11)H11A—C11—H11C109.5
N4—N3—C13117.81 (10)H11B—C11—H11C109.5
N4—N3—C12118.38 (9)N1—C12—N3111.72 (10)
C13—N3—C12123.41 (10)N1—C12—C10112.44 (10)
C19—N4—N3112.75 (10)N3—C12—C10111.80 (10)
C2—C1—H1A120.0N1—C12—S1112.47 (8)
C2—C1—H1B120.0N3—C12—S1100.87 (7)
H1A—C1—H1B120.0C10—C12—S1106.89 (8)
C1—C2—C3123.1 (3)C18—C13—C14119.45 (12)
C1—C2—H2118.5C18—C13—N3119.04 (12)
C3—C2—H2118.5C14—C13—N3121.50 (12)
C2'—C1'—H1'1120.0C15—C14—C13119.39 (15)
C2'—C1'—H1'2120.0C15—C14—H14120.3
H1'1—C1'—H1'2120.0C13—C14—H14120.3
C1'—C2'—C3114.3 (7)C16—C15—C14121.27 (17)
C1'—C2'—H2'122.9C16—C15—H15119.4
C3—C2'—H2'122.9C14—C15—H15119.4
N1—C3—C2'113.4 (4)C15—C16—C17119.15 (14)
N1—C3—C2112.4 (2)C15—C16—H16120.4
N1—C3—H3A109.1C17—C16—H16120.4
C2'—C3—H3A92.9C16—C17—C18121.24 (16)
C2—C3—H3A109.1C16—C17—H17119.4
N1—C3—H3B109.1C18—C17—H17119.4
C2'—C3—H3B122.5C13—C18—C17119.49 (15)
C2—C3—H3B109.1C13—C18—H18120.3
H3A—C3—H3B107.9C17—C18—H18120.3
N1—C4—C5122.78 (12)N4—C19—C20122.02 (11)
N1—C4—C9118.77 (11)N4—C19—S1115.81 (9)
C5—C4—C9118.41 (12)C20—C19—S1122.17 (9)
C6—C5—C4119.98 (15)C25—C20—C21119.00 (12)
C6—C5—H5120.0C25—C20—C19121.04 (11)
C4—C5—H5120.0C21—C20—C19119.96 (11)
C7—C6—C5121.61 (15)C22—C21—C20120.01 (15)
C7—C6—H6119.2C22—C21—H21120.0
C5—C6—H6119.2C20—C21—H21120.0
C8—C7—C6118.93 (14)C21—C22—C23120.40 (16)
C8—C7—H7120.5C21—C22—H22119.8
C6—C7—H7120.5C23—C22—H22119.8
C7—C8—C9120.97 (14)C24—C23—C22120.08 (15)
C7—C8—H8119.5C24—C23—H23120.0
C9—C8—H8119.5C22—C23—H23120.0
C8—C9—N2117.88 (12)C23—C24—C25120.06 (16)
C8—C9—C4120.09 (12)C23—C24—H24120.0
N2—C9—C4121.98 (11)C25—C24—H24120.0
N2—C10—C11119.02 (12)C24—C25—C20120.45 (14)
N2—C10—C12123.99 (11)C24—C25—H25119.8
C11—C10—C12116.96 (12)C20—C25—H25119.8
C13—N3—N4—C19176.13 (12)C13—N3—C12—S1−171.95 (12)
C12—N3—N4—C19−10.90 (18)N2—C10—C12—N115.62 (17)
C4—N1—C3—C2'67.3 (4)C11—C10—C12—N1−166.40 (12)
C12—N1—C3—C2'−128.4 (4)N2—C10—C12—N3142.24 (12)
C4—N1—C3—C286.4 (3)C11—C10—C12—N3−39.79 (15)
C12—N1—C3—C2−109.3 (3)N2—C10—C12—S1−108.26 (12)
C1'—C2'—C3—N1144.0 (11)C11—C10—C12—S169.71 (13)
C1'—C2'—C3—C253.6 (12)C19—S1—C12—N1106.99 (9)
C1—C2—C3—N1−147.7 (7)C19—S1—C12—N3−12.17 (9)
C12—N1—C4—C5−168.30 (12)C19—S1—C12—C10−129.14 (9)
C3—N1—C4—C5−4.53 (19)N4—N3—C13—C18−11.6 (2)
C12—N1—C4—C913.84 (17)C12—N3—C13—C18175.83 (12)
C3—N1—C4—C9177.61 (11)N4—N3—C13—C14169.30 (14)
N1—C4—C5—C6−177.99 (14)C12—N3—C13—C14−3.3 (2)
C9—C4—C5—C6−0.1 (2)C18—C13—C14—C15−0.9 (2)
C4—C5—C6—C70.5 (3)N3—C13—C14—C15178.20 (15)
C5—C6—C7—C8−0.4 (3)C13—C14—C15—C161.2 (3)
C6—C7—C8—C90.0 (2)C14—C15—C16—C17−0.5 (3)
C7—C8—C9—N2177.98 (13)C15—C16—C17—C18−0.4 (3)
C7—C8—C9—C40.4 (2)C14—C13—C18—C170.0 (2)
C10—N2—C9—C8177.11 (12)N3—C13—C18—C17−179.11 (14)
C10—N2—C9—C4−5.33 (17)C16—C17—C18—C130.6 (2)
N1—C4—C9—C8177.66 (11)N3—N4—C19—C20178.86 (11)
C5—C4—C9—C8−0.29 (18)N3—N4—C19—S1−0.79 (16)
N1—C4—C9—N20.16 (17)C12—S1—C19—N48.47 (11)
C5—C4—C9—N2−177.80 (12)C12—S1—C19—C20−171.19 (11)
C9—N2—C10—C11178.88 (12)N4—C19—C20—C25−175.82 (13)
C9—N2—C10—C12−3.19 (18)S1—C19—C20—C253.81 (18)
C4—N1—C12—N3−147.06 (11)N4—C19—C20—C214.4 (2)
C3—N1—C12—N348.70 (15)S1—C19—C20—C21−175.98 (10)
C4—N1—C12—C10−20.40 (15)C25—C20—C21—C22−0.5 (2)
C3—N1—C12—C10175.36 (11)C19—C20—C21—C22179.35 (14)
C4—N1—C12—S1100.32 (11)C20—C21—C22—C230.7 (3)
C3—N1—C12—S1−63.91 (13)C21—C22—C23—C24−0.6 (3)
N4—N3—C12—N1−104.20 (13)C22—C23—C24—C250.2 (3)
C13—N3—C12—N168.34 (16)C23—C24—C25—C200.1 (3)
N4—N3—C12—C10128.80 (13)C21—C20—C25—C240.0 (2)
C13—N3—C12—C10−58.66 (16)C19—C20—C25—C24−179.75 (14)
N4—N3—C12—S115.50 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2073).

References

  • Ahabchane, N. E. & Essassi, E. M. (2000). J. Soc. Chem. Tunis.4, 753–760.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Canara, H. D., Attar, K., Benchidmi, M., Essassi, E. M. & Garrigues, B. (2004). Indian J. Chem. Sect. B, 43, 660–666.
  • Ghomsi, J. N. T., Ahabchane, N. H. & Essassi, E. M. (2004). Phosphorus Sulfur Silicon Relat. Elem.179, 353–364.
  • Mustaphil, N. E. H., Ferfra, S., Essassi, E. M. & Garrigues, B. (2005). Phosphorus Sulfur Silicon Relat. Elem.180, 2193–2200.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography