PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3089.
Published online 2010 November 6. doi:  10.1107/S160053681004417X
PMCID: PMC3011799

2-{[4-(Diethyl­amino)­phen­yl]imino­methyl}-4,6-diiodo­phenol

Abstract

In the title compound, C17H18I2N2O, the dihedral angle between the aromatic rings is 5.4 (1)°. An intra­molecular O—H(...)N hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by C—H(...)π and π–π inter­actions [centroid–centroid distance = 3.697 (1) Å].

Related literature

For Schiff base compounds in coordination chemistry, see: Weber et al. (2007 [triangle]); Chen et al. (2008 [triangle]). For their role in biological processes, see: May et al. (2004 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Manvizhi et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3089-scheme1.jpg

Experimental

Crystal data

  • C17H18I2N2O
  • M r = 520.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3089-efi1.jpg
  • a = 11.5562 (5) Å
  • b = 11.1325 (5) Å
  • c = 15.1207 (6) Å
  • β = 111.958 (2)°
  • V = 1804.15 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.49 mm−1
  • T = 293 K
  • 0.24 × 0.22 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.450, T max = 0.572
  • 26163 measured reflections
  • 7041 independent reflections
  • 4445 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.105
  • S = 1.01
  • 7041 reflections
  • 202 parameters
  • H-atom parameters constrained
  • Δρmax = 1.14 e Å−3
  • Δρmin = −1.24 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004417X/bt5392sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004417X/bt5392Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ASP thanks Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological processes (May et al., 2004). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound has been carried out.

The molecular structure is illustrated in Fig. 1. The geometric parameters of the title molecule agrees well with those reported for a similar structure (Manvizhi et al., 2010). The dihedral angle between the aromatic rings is 5.4 (1)°, showing that both the rings are almost coplanar.

In addition to the van der Waals interactions, the crystal packing is stabilized by C-H···π hydrogen bonds as well as by π-π interactions. The intramolecular O-H···N hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing (Fig. 2) is stabilized by C-H···π interactions between a H16B atom and a neighbouring ring, with a C16-H16B···Cg1i separation of 2.94 Å (Fig. 2 and Table 1; Cg1 is the centroid of the C8-C13 ring ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by π-π interactions with a Cg1···Cg2ii and a Cg2···Cg1ii separation of 3.697 (1)Å and 3.697 (1)Å, respectively (Fig. 2; Cg1 and Cg2 are the centroids of the C8-C13 benzene ring and C1-C6 benzene ring, respectively, symmetry code as in Table 1).

Experimental

An ethanoic solution (30 ml) and N,N-diethyl aniline (10 mmol) was magnetically stirred in a round bottom flask followed by dropwise addition of 3,5-diiodosalicylaldehyde (10 mmol). The reaction mixture was then refluxed for two hours and upon cooling to 273K a yellow crystalline solid precipitated from the mixture. Single yellow crystals were obtained, filtered off, washed with ice cold ethanol and air dried.

Refinement

All the H atoms were positioned geometrically, with O-H = 0.82 Å and and C-H = 0.93 - 0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.2Ueq.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
Fig. 2.
C-H···π and π-π interactions (dotted lines) in the title compound. Cg1 and Cg2 denote the centroids of the C8-C13 ring and C1-C6 ring, respectively. [Symmetry code: (i) -1/2-x, -1/2+y, 1/2-z; (ii) -x, -y, ...

Crystal data

C17H18I2N2OF(000) = 992
Mr = 520.13Dx = 1.915 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7076 reflections
a = 11.5562 (5) Åθ = 1.9–33.5°
b = 11.1325 (5) ŵ = 3.49 mm1
c = 15.1207 (6) ÅT = 293 K
β = 111.958 (2)°Block, yellow
V = 1804.15 (13) Å30.24 × 0.22 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer7041 independent reflections
Radiation source: fine-focus sealed tube4445 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 33.5°, θmin = 1.9°
ω scansh = −16→17
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −10→17
Tmin = 0.450, Tmax = 0.572l = −23→20
26163 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.105w = 1/[σ2(Fo2) + (0.0437P)2 + 1.1802P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
7041 reflectionsΔρmax = 1.14 e Å3
202 parametersΔρmin = −1.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00078 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.33796 (2)0.47955 (2)0.048244 (18)0.06508 (9)
I2−0.17213 (2)0.45975 (3)−0.257569 (17)0.07853 (11)
O1−0.18770 (18)0.2470 (2)−0.12546 (15)0.0561 (5)
H1−0.19350.1911−0.09200.084*
N1−0.1205 (2)0.10225 (19)0.01926 (16)0.0424 (5)
N2−0.2604 (2)−0.2797 (2)0.20106 (18)0.0502 (5)
C1−0.0432 (2)0.3956 (2)−0.12942 (18)0.0418 (5)
C2−0.0754 (2)0.2987 (2)−0.08510 (19)0.0401 (5)
C30.0127 (2)0.2571 (2)0.00140 (18)0.0384 (5)
C40.1298 (2)0.3106 (2)0.0396 (2)0.0434 (5)
H40.18820.28270.09690.052*
C50.1596 (2)0.4050 (2)−0.00723 (19)0.0413 (5)
C60.0732 (2)0.4483 (2)−0.09115 (19)0.0424 (5)
H60.09310.5128−0.12200.051*
C7−0.0155 (3)0.1572 (2)0.0516 (2)0.0435 (5)
H70.04470.13210.10910.052*
C8−0.1490 (2)0.0059 (2)0.06823 (19)0.0393 (5)
C9−0.0659 (2)−0.0478 (2)0.1498 (2)0.0448 (6)
H90.0160−0.02060.17530.054*
C10−0.1022 (3)−0.1412 (3)0.1942 (2)0.0460 (6)
H10−0.0442−0.17520.24900.055*
C11−0.2248 (2)−0.1854 (2)0.15812 (19)0.0414 (5)
C12−0.3081 (3)−0.1300 (3)0.0757 (2)0.0474 (6)
H12−0.3906−0.15570.05010.057*
C13−0.2698 (3)−0.0380 (2)0.03204 (19)0.0442 (6)
H13−0.3268−0.0044−0.02340.053*
C14−0.3909 (3)−0.3145 (3)0.1708 (2)0.0564 (7)
H14A−0.3951−0.39520.19360.068*
H14B−0.4266−0.31680.10170.068*
C15−0.4696 (4)−0.2328 (4)0.2052 (3)0.0820 (12)
H15A−0.4382−0.23340.27370.123*
H15B−0.5544−0.26050.18080.123*
H15C−0.4662−0.15250.18320.123*
C16−0.1740 (3)−0.3316 (3)0.2895 (3)0.0681 (9)
H16A−0.0935−0.34210.28420.082*
H16B−0.2042−0.41050.29770.082*
C17−0.1568 (4)−0.2583 (5)0.3760 (3)0.0930 (15)
H17A−0.1348−0.17770.36620.140*
H17B−0.0914−0.29260.43000.140*
H17C−0.2331−0.25750.38740.140*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.04530 (12)0.06753 (15)0.07159 (16)−0.01936 (9)0.00944 (10)−0.00041 (10)
I20.05227 (14)0.1088 (2)0.05720 (15)−0.01130 (12)0.00056 (10)0.03482 (13)
O10.0423 (10)0.0597 (12)0.0577 (12)−0.0140 (9)0.0090 (9)0.0060 (10)
N10.0457 (12)0.0380 (10)0.0479 (12)−0.0021 (9)0.0227 (10)0.0008 (9)
N20.0510 (13)0.0495 (13)0.0506 (14)−0.0104 (10)0.0194 (11)0.0062 (11)
C10.0391 (12)0.0445 (13)0.0393 (13)−0.0014 (10)0.0117 (10)0.0037 (10)
C20.0373 (12)0.0402 (12)0.0435 (13)−0.0012 (9)0.0157 (10)−0.0027 (10)
C30.0385 (12)0.0336 (11)0.0428 (13)−0.0014 (9)0.0149 (10)−0.0011 (9)
C40.0400 (13)0.0404 (12)0.0442 (14)−0.0019 (10)0.0092 (10)0.0023 (11)
C50.0365 (12)0.0382 (12)0.0462 (14)−0.0050 (9)0.0121 (10)−0.0025 (10)
C60.0445 (14)0.0386 (12)0.0440 (14)−0.0029 (10)0.0166 (11)0.0029 (10)
C70.0480 (14)0.0373 (12)0.0475 (14)−0.0004 (10)0.0206 (12)0.0035 (11)
C80.0419 (13)0.0358 (11)0.0437 (13)−0.0019 (9)0.0201 (11)−0.0004 (10)
C90.0365 (12)0.0467 (14)0.0528 (16)−0.0041 (10)0.0186 (11)0.0022 (12)
C100.0421 (13)0.0478 (14)0.0483 (15)−0.0003 (11)0.0172 (11)0.0065 (12)
C110.0449 (13)0.0394 (12)0.0423 (13)−0.0050 (10)0.0191 (11)−0.0015 (10)
C120.0428 (13)0.0521 (15)0.0434 (14)−0.0138 (11)0.0115 (11)−0.0024 (12)
C130.0437 (13)0.0476 (14)0.0380 (13)−0.0064 (11)0.0115 (11)−0.0003 (11)
C140.0550 (17)0.0511 (16)0.0634 (19)−0.0177 (13)0.0225 (15)0.0013 (14)
C150.059 (2)0.096 (3)0.098 (3)−0.009 (2)0.037 (2)−0.010 (2)
C160.066 (2)0.067 (2)0.071 (2)−0.0094 (17)0.0248 (17)0.0222 (18)
C170.089 (3)0.123 (4)0.061 (2)−0.037 (3)0.020 (2)0.004 (2)

Geometric parameters (Å, °)

I1—C52.085 (2)C9—C101.385 (4)
I2—C12.080 (3)C9—H90.9300
O1—C21.340 (3)C10—C111.403 (4)
O1—H10.8200C10—H100.9300
N1—C71.281 (3)C11—C121.401 (4)
N1—C81.411 (3)C12—C131.378 (4)
N2—C111.375 (3)C12—H120.9300
N2—C141.456 (4)C13—H130.9300
N2—C161.457 (4)C14—C151.510 (5)
C1—C61.381 (4)C14—H14A0.9700
C1—C21.391 (4)C14—H14B0.9700
C2—C31.402 (4)C15—H15A0.9600
C3—C41.391 (3)C15—H15B0.9600
C3—C71.450 (3)C15—H15C0.9600
C4—C51.381 (4)C16—C171.489 (6)
C4—H40.9300C16—H16A0.9700
C5—C61.376 (4)C16—H16B0.9700
C6—H60.9300C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C91.383 (4)C17—H17C0.9600
C8—C131.384 (4)
C2—O1—H1109.5C11—C10—H10119.4
C7—N1—C8122.5 (2)N2—C11—C12121.9 (2)
C11—N2—C14120.8 (2)N2—C11—C10121.4 (3)
C11—N2—C16120.9 (2)C12—C11—C10116.7 (2)
C14—N2—C16117.2 (2)C13—C12—C11121.1 (2)
C6—C1—C2121.4 (2)C13—C12—H12119.5
C6—C1—I2119.38 (19)C11—C12—H12119.5
C2—C1—I2119.18 (19)C12—C13—C8122.0 (3)
O1—C2—C1120.1 (2)C12—C13—H13119.0
O1—C2—C3121.6 (2)C8—C13—H13119.0
C1—C2—C3118.3 (2)N2—C14—C15114.7 (3)
C4—C3—C2120.0 (2)N2—C14—H14A108.6
C4—C3—C7119.0 (2)C15—C14—H14A108.6
C2—C3—C7121.0 (2)N2—C14—H14B108.6
C5—C4—C3120.2 (2)C15—C14—H14B108.6
C5—C4—H4119.9H14A—C14—H14B107.6
C3—C4—H4119.9C14—C15—H15A109.5
C6—C5—C4120.4 (2)C14—C15—H15B109.5
C6—C5—I1119.91 (19)H15A—C15—H15B109.5
C4—C5—I1119.71 (19)C14—C15—H15C109.5
C5—C6—C1119.6 (2)H15A—C15—H15C109.5
C5—C6—H6120.2H15B—C15—H15C109.5
C1—C6—H6120.2N2—C16—C17114.2 (3)
N1—C7—C3122.2 (3)N2—C16—H16A108.7
N1—C7—H7118.9C17—C16—H16A108.7
C3—C7—H7118.9N2—C16—H16B108.7
C9—C8—C13117.5 (2)C17—C16—H16B108.7
C9—C8—N1125.2 (2)H16A—C16—H16B107.6
C13—C8—N1117.4 (2)C16—C17—H17A109.5
C8—C9—C10121.4 (3)C16—C17—H17B109.5
C8—C9—H9119.3H17A—C17—H17B109.5
C10—C9—H9119.3C16—C17—H17C109.5
C9—C10—C11121.3 (3)H17A—C17—H17C109.5
C9—C10—H10119.4H17B—C17—H17C109.5
C6—C1—C2—O1−177.9 (2)C7—N1—C8—C13173.1 (2)
I2—C1—C2—O10.8 (3)C13—C8—C9—C10−0.6 (4)
C6—C1—C2—C31.6 (4)N1—C8—C9—C10179.1 (3)
I2—C1—C2—C3−179.80 (18)C8—C9—C10—C110.2 (4)
O1—C2—C3—C4177.9 (2)C14—N2—C11—C12−9.1 (4)
C1—C2—C3—C4−1.5 (4)C16—N2—C11—C12−176.7 (3)
O1—C2—C3—C7−1.1 (4)C14—N2—C11—C10171.8 (3)
C1—C2—C3—C7179.5 (2)C16—N2—C11—C104.3 (4)
C2—C3—C4—C50.2 (4)C9—C10—C11—N2178.7 (3)
C7—C3—C4—C5179.2 (2)C9—C10—C11—C12−0.4 (4)
C3—C4—C5—C61.1 (4)N2—C11—C12—C13−178.0 (3)
C3—C4—C5—I1−177.55 (19)C10—C11—C12—C131.1 (4)
C4—C5—C6—C1−1.1 (4)C11—C12—C13—C8−1.6 (4)
I1—C5—C6—C1177.6 (2)C9—C8—C13—C121.3 (4)
C2—C1—C6—C5−0.3 (4)N1—C8—C13—C12−178.4 (2)
I2—C1—C6—C5−178.9 (2)C11—N2—C14—C15−76.2 (4)
C8—N1—C7—C3−179.3 (2)C16—N2—C14—C1591.8 (4)
C4—C3—C7—N1−178.5 (2)C11—N2—C16—C1776.8 (4)
C2—C3—C7—N10.6 (4)C14—N2—C16—C17−91.2 (4)
C7—N1—C8—C9−6.6 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.592 (3)148
C16—H16B···Cg1ii0.972.943.845 (4)155

Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5392).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Manvizhi, K., Ranjith, S., Parthiban, K., Rajagopal, G. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2422. [PMC free article] [PubMed]
  • May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc.126, 4145–4156. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography