PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3249.
Published online 2010 November 20. doi:  10.1107/S1600536810047070
PMCID: PMC3011798

Ethyl 4,6-O-benzyl­idene-2-de­oxy-N-phthalimido-1-thio-β-d-glucopyran­oside

Abstract

In the title compound, C23H23NO6S, the plane of the N-phthalimido group makes a dihedral angle of 67.4 (1)° with the least square plane of the sugar ring defined by the C2, C3, C5 and O5 atoms using standard glucose nomenclature. The thio­ethyl group has the exo-anomeric conformation. In the crystal, inter­molecular hydrogen bonds involving the hy­droxy groups and the carbonyl O atoms of adjacent N-phthalimido groups form chains parallel to the b axis. The chains are further stabilized by C—H(...)π inter­actions.

Related literature

For the chemistry and applications of N-acetyl-β-d-glucosa­mine derivatives, see: Tan et al. (2009 [triangle]); Werz et al. (2007 [triangle]). For the conformation of related compounds, see: Lemieux & Koto (1974 [triangle]); Färnbäck et al. (2007 [triangle]). For the synthesis of the title compound, see: Lönn (1985 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3249-scheme1.jpg

Experimental

Crystal data

  • C23H23NO6S
  • M r = 441.48
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3249-efi1.jpg
  • a = 8.6728 (6) Å
  • b = 9.7583 (10) Å
  • c = 25.3102 (15) Å
  • V = 2142.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 293 K
  • 0.30 × 0.12 × 0.05 mm

Data collection

  • Stoe IPDS diffractometer
  • Absorption correction: numerical (X-RED; Stoe & Cie, 1997) [triangle] T min = 0.730, T max = 0.933
  • 12985 measured reflections
  • 5120 independent reflections
  • 2352 reflections with I > 2σ(I)
  • R int = 0.110

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.110
  • S = 0.83
  • 5120 reflections
  • 281 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1544 Friedel pairs
  • Flack parameter: −0.07 (10)

Data collection: EXPOSE (Stoe & Cie, 1997) [triangle]; cell refinement: CELL (Stoe & Cie, 1997) [triangle]; data reduction: INTEGRATE (Stoe & Cie, 1997) [triangle]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810047070/rz2504sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047070/rz2504Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from the Swedish Research Council and by the Faculty of Natural Sciences at Stockholm University

supplementary crystallographic information

Comment

N-acetyl-D-glucosamine (D-GlcNAc) is found in nature in bacteria, crustaceans as well as in mammals. In glycoproteins the β-D-GlcNAc is present in N-linked oligosaccharides and it is of great importance to have access to a large arsenal of different suitably protected synthetic precursors in order to carry out synthesis of a variety of different oligosaccharides (Werz et al. 2007). These can be used as probes in microarray applications or to synthesize N-linked glycoproteins (Tan et al. 2009). In the structure shown in Fig. 1 the least square plane of the N-phthaloyl group makes a dihedral angle of 67.4 (1)° to the sugar ring plane defined by the four atoms (C2,C3,C5,O5).

In glycosides the [var phi] torsion angle (H1—C1—S1—C7) is of particular interest and is for the title compound in agreement with the exo-anomeric effect (Lemieux & Koto, 1974). It is, however sligthly shifted away from a staggered conformation, to 25.4°. The Cremer & Pople (1975) parameters for the different rings are for (O5—C5): Q=0.585 (3) Å, θ=8.4 (3)° and [var phi]=329 (2)°, for (O4,C4,C5,C6,O6,C9): Q=0.575 (3) Å, θ=3.4 (3)° and [var phi]=126 (4)°. These Q-values are similar to total puckering amplitudes for previously described pyranosides (Färnbäck et al., 2007).

Intermolecular hydrogen bonding from the hydroxy group is present (Table 1) where one of the carbonyl O atoms in the N-phthaloyl group act as acceptor, making up chains along the [010] direction shown in Fig. 2. In addition to this conventional hydrogen bond the intermolecular packing is stabilized due to interactions between substituents of the sugar rings. There is a salient C—H···π interaction between the center of gravity (Cg) of the ring C23—C28 of the N-phthaloyl group and the meta position (C14) of the phenyl group (C10—C15). Furthermore there are three more π···π interactions present with d(CgCg) < 4.8 Å with dihedral angles between the interacting π systems in the vicinity of 60° indicating a herringbone packing pattern.

Experimental

The synthesis of the title compound has been described previously (Lönn, 1985). Colourless crystals of the title compound were grown from diethyl ether/pentane (1:1 v/v) at ambient temperature.

Refinement

The hydrogen atoms were refined in riding mode with C–H = 0.93–0.98 Å, O–H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms.

Figures

Fig. 1.
Molecular structure showing 50% probability displacement ellipsoids.
Fig. 2.
Stereoview showing the intermolecular hydrogen bond intercations between molecules forming a chain along the b-direction.

Crystal data

C23H23NO6SF(000) = 928
Mr = 441.48Dx = 1.369 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5000 reflections
a = 8.6728 (6) Åθ = 2.4–23.3°
b = 9.7583 (10) ŵ = 0.19 mm1
c = 25.3102 (15) ÅT = 293 K
V = 2142.0 (3) Å3Prism, colourless
Z = 40.30 × 0.12 × 0.05 mm

Data collection

Stoe IPDS diffractometer3734 independent reflections
Radiation source: fine-focus sealed tube2352 reflections with I > 2σ(I)
graphiteRint = 0.110
Detector resolution: 6.7 pixels mm-1θmax = 25.0°, θmin = 2.2°
[var phi] scanh = −10→10
Absorption correction: numerical (X-RED; Stoe & Cie, 1997)k = −11→11
Tmin = 0.730, Tmax = 0.933l = −29→29
5120 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.110w = 1/[σ2(Fo2) + (0.0371P)2] where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
5120 reflectionsΔρmax = 0.21 e Å3
281 parametersΔρmin = −0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1544 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.07 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.32966 (10)0.49384 (9)0.89236 (3)0.0598 (2)
C70.4033 (4)0.6664 (4)0.88601 (16)0.0742 (11)
H7A0.42180.70270.92110.089*
H7B0.50180.66260.86790.089*
C80.2991 (6)0.7648 (4)0.85654 (18)0.0869 (13)
H8A0.34690.85350.85500.130*
H8B0.20210.77190.87460.130*
H8C0.28220.73150.82130.130*
C10.3502 (4)0.4316 (3)0.82624 (11)0.0449 (7)
H10.43270.48260.80850.054*
C20.3910 (3)0.2767 (3)0.82645 (11)0.0438 (7)
H20.30980.22970.84640.053*
C30.3922 (3)0.2146 (3)0.77071 (11)0.0440 (7)
H30.48230.24860.75130.053*
C40.2480 (3)0.2552 (3)0.74190 (11)0.0425 (7)
H40.15910.20980.75820.051*
C50.2252 (4)0.4098 (3)0.74389 (12)0.0475 (8)
H50.31480.45570.72830.057*
O50.2082 (2)0.45149 (19)0.79800 (8)0.0495 (5)
O30.4053 (3)0.0694 (2)0.77736 (10)0.0681 (7)
H3A0.34560.03060.75720.102*
O40.2607 (2)0.21320 (19)0.68835 (8)0.0463 (5)
C90.1286 (4)0.2511 (3)0.65856 (12)0.0504 (8)
H90.03780.20320.67230.061*
O60.1033 (3)0.39409 (19)0.66026 (8)0.0576 (6)
C60.0822 (4)0.4450 (3)0.71277 (13)0.0558 (8)
H6A−0.00770.40300.72880.067*
H6B0.06700.54350.71210.067*
C100.1571 (4)0.2085 (3)0.60276 (12)0.0470 (7)
C110.2464 (4)0.2843 (3)0.56915 (14)0.0632 (10)
H110.28420.36870.58040.076*
C120.2818 (5)0.2385 (4)0.51886 (15)0.0731 (10)
H120.34370.29100.49670.088*
C130.2247 (5)0.1146 (3)0.50192 (15)0.0688 (10)
H130.24740.08300.46810.083*
C140.1343 (5)0.0382 (3)0.53503 (15)0.0699 (10)
H140.0957−0.04580.52370.084*
C150.1001 (4)0.0850 (3)0.58515 (14)0.0594 (9)
H150.03790.03260.60720.071*
N20.5361 (3)0.2509 (2)0.85380 (9)0.0438 (6)
C210.5417 (4)0.1857 (3)0.90323 (12)0.0455 (7)
O220.4289 (3)0.1431 (2)0.92638 (9)0.0658 (7)
C230.7059 (4)0.1797 (3)0.91881 (12)0.0447 (7)
C240.7748 (4)0.1282 (3)0.96358 (13)0.0545 (8)
H240.71670.09160.99110.065*
C250.9354 (4)0.1333 (3)0.96599 (14)0.0589 (9)
H250.98590.09940.99570.071*
C261.0203 (4)0.1878 (4)0.92502 (15)0.0598 (9)
H261.12730.18710.92710.072*
C270.9503 (4)0.2434 (3)0.88077 (12)0.0528 (8)
H271.00770.28300.85370.063*
C280.7922 (3)0.2375 (3)0.87864 (11)0.0446 (7)
C290.6829 (4)0.2885 (3)0.83770 (12)0.0468 (7)
O300.7131 (3)0.3513 (2)0.79655 (9)0.0606 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0730 (6)0.0708 (5)0.0354 (5)0.0043 (4)0.0044 (4)−0.0071 (4)
C70.063 (2)0.092 (3)0.068 (3)−0.021 (2)0.005 (2)−0.033 (2)
C80.114 (4)0.069 (2)0.078 (3)−0.014 (2)−0.005 (3)0.000 (2)
C10.0474 (19)0.0512 (16)0.0360 (18)0.0038 (13)0.0010 (14)−0.0006 (13)
C20.0416 (17)0.0561 (17)0.0338 (18)0.0013 (13)0.0009 (13)0.0043 (13)
C30.0504 (18)0.0451 (16)0.0364 (18)0.0125 (13)−0.0011 (13)0.0021 (12)
C40.0486 (17)0.0449 (15)0.0340 (18)0.0057 (13)0.0002 (12)0.0043 (13)
C50.060 (2)0.0466 (16)0.0355 (19)0.0066 (14)0.0006 (15)−0.0020 (12)
O50.0534 (13)0.0574 (12)0.0377 (13)0.0118 (9)−0.0016 (10)−0.0038 (9)
O30.0912 (19)0.0507 (12)0.0624 (18)0.0218 (12)−0.0265 (13)−0.0069 (10)
O40.0524 (12)0.0512 (11)0.0352 (13)0.0086 (9)−0.0091 (9)−0.0031 (8)
C90.057 (2)0.0474 (17)0.047 (2)0.0087 (15)−0.0077 (15)0.0031 (13)
O60.0801 (16)0.0517 (13)0.0410 (14)0.0189 (11)−0.0137 (11)−0.0019 (9)
C60.063 (2)0.0601 (19)0.044 (2)0.0174 (16)−0.0084 (16)0.0004 (14)
C100.0546 (18)0.0479 (16)0.0385 (19)0.0018 (14)−0.0114 (15)0.0027 (13)
C110.089 (3)0.0551 (19)0.046 (2)−0.0067 (18)−0.0045 (18)0.0008 (15)
C120.096 (3)0.073 (2)0.050 (3)−0.008 (2)0.001 (2)0.0095 (18)
C130.095 (3)0.068 (2)0.043 (2)0.011 (2)−0.013 (2)−0.0061 (17)
C140.096 (3)0.060 (2)0.054 (3)−0.0034 (19)−0.014 (2)−0.0097 (17)
C150.066 (2)0.0569 (19)0.055 (2)−0.0103 (17)−0.0049 (18)0.0005 (15)
N20.0399 (14)0.0605 (15)0.0311 (15)−0.0018 (12)−0.0001 (11)0.0039 (11)
C210.0474 (19)0.0567 (17)0.0324 (19)−0.0021 (14)0.0028 (14)0.0055 (12)
O220.0535 (14)0.0927 (17)0.0513 (15)−0.0082 (12)0.0001 (12)0.0279 (12)
C230.0504 (19)0.0476 (15)0.0361 (18)0.0017 (14)−0.0011 (14)0.0023 (13)
C240.059 (2)0.066 (2)0.038 (2)0.0025 (16)−0.0042 (16)0.0088 (15)
C250.058 (2)0.072 (2)0.047 (2)0.0102 (17)−0.0126 (18)0.0021 (16)
C260.0464 (19)0.074 (2)0.059 (2)0.0033 (17)−0.0078 (17)−0.0069 (18)
C270.055 (2)0.0589 (19)0.045 (2)−0.0040 (16)−0.0001 (15)−0.0058 (14)
C280.0436 (17)0.0522 (16)0.0379 (19)−0.0018 (14)0.0003 (13)−0.0043 (13)
C290.0509 (19)0.0556 (18)0.0339 (19)−0.0004 (14)0.0025 (14)−0.0011 (13)
O300.0596 (14)0.0801 (15)0.0423 (14)−0.0080 (11)0.0040 (11)0.0159 (11)

Geometric parameters (Å, °)

S1—C11.789 (3)C6—H6A0.9700
S1—C71.808 (4)C6—H6B0.9700
C7—C81.515 (6)C10—C111.368 (5)
C7—H7A0.9700C10—C151.376 (4)
C7—H7B0.9700C11—C121.384 (5)
C8—H8A0.9600C11—H110.9300
C8—H8B0.9600C12—C131.374 (5)
C8—H8C0.9600C12—H120.9300
C1—O51.437 (4)C13—C141.369 (5)
C1—C21.553 (4)C13—H130.9300
C1—H10.9800C14—C151.381 (5)
C2—N21.458 (4)C14—H140.9300
C2—C31.535 (4)C15—H150.9300
C2—H20.9800N2—C291.387 (4)
C3—O31.431 (3)N2—C211.404 (4)
C3—C41.501 (4)C21—O221.214 (4)
C3—H30.9800C21—C231.479 (4)
C4—O41.420 (3)C23—C241.376 (4)
C4—C51.523 (4)C23—C281.383 (4)
C4—H40.9800C24—C251.395 (5)
C5—O51.436 (4)C24—H240.9300
C5—C61.509 (4)C25—C261.378 (5)
C5—H50.9800C25—H250.9300
O3—H3A0.8200C26—C271.385 (5)
O4—C91.420 (4)C26—H260.9300
C9—O61.413 (3)C27—C281.373 (5)
C9—C101.493 (4)C27—H270.9300
C9—H90.9800C28—C291.490 (4)
O6—C61.430 (4)C29—O301.236 (4)
C1—S1—C7101.41 (16)C9—O6—C6113.0 (2)
C8—C7—S1115.0 (3)O6—C6—C5107.5 (3)
C8—C7—H7A108.5O6—C6—H6A110.2
S1—C7—H7A108.5C5—C6—H6A110.2
C8—C7—H7B108.5O6—C6—H6B110.2
S1—C7—H7B108.5C5—C6—H6B110.2
H7A—C7—H7B107.5H6A—C6—H6B108.5
C7—C8—H8A109.5C11—C10—C15118.4 (3)
C7—C8—H8B109.5C11—C10—C9122.1 (3)
H8A—C8—H8B109.5C15—C10—C9119.4 (3)
C7—C8—H8C109.5C10—C11—C12121.5 (3)
H8A—C8—H8C109.5C10—C11—H11119.3
H8B—C8—H8C109.5C12—C11—H11119.3
O5—C1—C2109.2 (2)C13—C12—C11119.4 (4)
O5—C1—S1109.53 (19)C13—C12—H12120.3
C2—C1—S1110.5 (2)C11—C12—H12120.3
O5—C1—H1109.2C14—C13—C12119.6 (4)
C2—C1—H1109.2C14—C13—H13120.2
S1—C1—H1109.2C12—C13—H13120.2
N2—C2—C3111.2 (2)C13—C14—C15120.3 (3)
N2—C2—C1111.5 (2)C13—C14—H14119.8
C3—C2—C1112.5 (2)C15—C14—H14119.8
N2—C2—H2107.1C10—C15—C14120.7 (3)
C3—C2—H2107.1C10—C15—H15119.7
C1—C2—H2107.1C14—C15—H15119.7
O3—C3—C4112.6 (2)C29—N2—C21110.5 (2)
O3—C3—C2106.5 (2)C29—N2—C2127.4 (2)
C4—C3—C2109.6 (2)C21—N2—C2122.1 (2)
O3—C3—H3109.4O22—C21—N2123.9 (3)
C4—C3—H3109.4O22—C21—C23129.3 (3)
C2—C3—H3109.4N2—C21—C23106.8 (2)
O4—C4—C3108.8 (2)C24—C23—C28121.3 (3)
O4—C4—C5109.1 (2)C24—C23—C21130.7 (3)
C3—C4—C5110.7 (2)C28—C23—C21108.0 (3)
O4—C4—H4109.4C23—C24—C25117.2 (3)
C3—C4—H4109.4C23—C24—H24121.4
C5—C4—H4109.4C25—C24—H24121.4
O5—C5—C6110.4 (3)C26—C25—C24120.9 (3)
O5—C5—C4109.0 (2)C26—C25—H25119.5
C6—C5—C4108.3 (3)C24—C25—H25119.5
O5—C5—H5109.7C25—C26—C27121.7 (3)
C6—C5—H5109.7C25—C26—H26119.1
C4—C5—H5109.7C27—C26—H26119.1
C5—O5—C1110.4 (2)C28—C27—C26116.9 (3)
C3—O3—H3A109.5C28—C27—H27121.5
C4—O4—C9111.6 (2)C26—C27—H27121.5
O6—C9—O4111.5 (2)C27—C28—C23121.9 (3)
O6—C9—C10109.3 (2)C27—C28—C29130.4 (3)
O4—C9—C10107.2 (2)C23—C28—C29107.6 (3)
O6—C9—H9109.6O30—C29—N2125.0 (3)
O4—C9—H9109.6O30—C29—C28128.1 (3)
C10—C9—H9109.6N2—C29—C28106.9 (2)
C7—S1—C1—H125.4C9—C10—C11—C12174.9 (3)
C1—S1—C7—C872.3 (3)C10—C11—C12—C130.7 (6)
C7—S1—C1—O5−94.1 (2)C11—C12—C13—C14−0.3 (6)
C7—S1—C1—C2145.6 (2)C12—C13—C14—C150.2 (6)
O5—C1—C2—N2178.9 (2)C11—C10—C15—C140.9 (5)
S1—C1—C2—N2−60.6 (3)C9—C10—C15—C14−175.1 (3)
O5—C1—C2—C353.1 (3)C13—C14—C15—C10−0.5 (6)
S1—C1—C2—C3173.7 (2)C3—C2—N2—C2958.1 (4)
N2—C2—C3—O363.6 (3)C1—C2—N2—C29−68.4 (4)
C1—C2—C3—O3−170.5 (2)C3—C2—N2—C21−124.5 (3)
N2—C2—C3—C4−174.3 (2)C1—C2—N2—C21109.0 (3)
C1—C2—C3—C4−48.4 (3)C29—N2—C21—O22179.7 (3)
O3—C3—C4—O4−69.7 (3)C2—N2—C21—O221.9 (5)
C2—C3—C4—O4172.0 (2)C29—N2—C21—C23−1.2 (3)
O3—C3—C4—C5170.4 (2)C2—N2—C21—C23−179.0 (2)
C2—C3—C4—C552.1 (3)O22—C21—C23—C24−1.8 (6)
O4—C4—C5—O5178.5 (2)N2—C21—C23—C24179.1 (3)
C3—C4—C5—O5−61.8 (3)O22—C21—C23—C28177.8 (3)
O4—C4—C5—C658.2 (3)N2—C21—C23—C28−1.2 (3)
C3—C4—C5—C6178.0 (3)C28—C23—C24—C25−1.8 (5)
C6—C5—O5—C1−173.8 (2)C21—C23—C24—C25177.8 (3)
C4—C5—O5—C167.3 (3)C23—C24—C25—C260.0 (5)
C2—C1—O5—C5−62.4 (3)C24—C25—C26—C272.1 (5)
S1—C1—O5—C5176.51 (19)C25—C26—C27—C28−2.3 (5)
C3—C4—O4—C9−178.8 (2)C26—C27—C28—C230.4 (5)
C5—C4—O4—C9−57.9 (3)C26—C27—C28—C29179.1 (3)
C4—O4—C9—O657.8 (3)C24—C23—C28—C271.6 (5)
C4—O4—C9—C10177.3 (2)C21—C23—C28—C27−178.1 (3)
O4—C9—O6—C6−58.9 (3)C24—C23—C28—C29−177.3 (3)
C10—C9—O6—C6−177.2 (3)C21—C23—C28—C293.0 (3)
C9—O6—C6—C558.9 (3)C21—N2—C29—O30−177.7 (3)
O5—C5—C6—O6−176.8 (2)C2—N2—C29—O300.0 (5)
C4—C5—C6—O6−57.5 (3)C21—N2—C29—C283.0 (3)
O6—C9—C10—C1141.1 (4)C2—N2—C29—C28−179.4 (3)
O4—C9—C10—C11−79.8 (3)C27—C28—C29—O30−1.9 (5)
O6—C9—C10—C15−143.0 (3)C23—C28—C29—O30177.0 (3)
O4—C9—C10—C1596.1 (3)C27—C28—C29—N2177.4 (3)
C15—C10—C11—C12−1.1 (5)C23—C28—C29—N2−3.7 (3)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C23—C28 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O30i0.822.273.014 (3)150
C14—H14···Cgi0.932.983.613 (3)126

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2504).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Färnbäck, M., Söderman, P., Eriksson, L. & Widmalm, G. (2007). Acta Cryst. E63, o1581–o1583.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Lemieux, R. U. & Koto, S. (1974). Tetrahedron30, 1933–1944.
  • Lönn, H. (1985). Carbohydr. Res.139, 105–113. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1997). EXPOSE, CELL and INTEGRATE in IPDS Software and X-RED Stoe & Cie GmbH, Darmstadt, Germany.
  • Tan, Z., Shang, S., Halkina, T., Yuan, Y. & Danishefsky, S. J. (2009). J. Am. Chem. Soc.131, 5424–5431. [PMC free article] [PubMed]
  • Werz, D. B., Ranzinger, R., Herget, S., Adibekian, A., von der Lieth, C.-W. & Seeberger, P. H. (2007). ACS Chem. Biol.2, 685–691. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography