PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1538–m1539.
Published online 2010 November 10. doi:  10.1107/S1600536810045186
PMCID: PMC3011795

catena-Poly[[[(1,10-phenanthroline)copper(I)]-μ-cyanido] ethanol hemisolvate]

Abstract

In the title coordination polymer, {[Cu(CN)(C12H10N2)]·0.5C2H5OH}n, there are two CuI ions, two 1,10-phenanthroline (phen) ligands and two cyanide ions in the asymmetric unit along with a highly disordered ethanol solvent mol­ecule, which was modelled as being disordered over two sets of sites in a 0.829 (7):0.171 (7) ratio. The orientation/ordering of the C and N atoms of the cyanide ions could not be determined in the present refinement and they were modelled as being statistically disordered. Both copper ions are coordinated by an N,N′-bidentate phen ligand and two cyanide ligands, generating distorted tetra­hedral CuN2 Q 2 (Q = C or N) tetra­hedra. The μ-cyanide ligands link the metal ions, forming a zigzag chain propagating in [001]. The chains are cross-linked by numerous aromatic π–π stacking contacts between adjacent phen rings [minimum centroid–centroid separation = 3.620 (3) Å].

Related literature

For general background to cyanide coordination polymers, see: Holmes & Girolami (1999 [triangle]); Deng et al. (2008 [triangle]). For related structures, see: Dyason et al. (1985 [triangle]); Chesnut et al. (1999 [triangle]); Zhao et al. (2004 [triangle]); Huang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1538-scheme1.jpg

Experimental

Crystal data

  • [Cu(CN)(C12H10N2)]·0.5C2H6O
  • M r = 292.8
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1538-efi1.jpg
  • a = 18.4896 (6) Å
  • b = 8.4033 (3) Å
  • c = 16.5166 (5) Å
  • β = 109.974 (2)°
  • V = 2411.88 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.80 mm−1
  • T = 293 K
  • 0.25 × 0.23 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.662, T max = 0.726
  • 21068 measured reflections
  • 4729 independent reflections
  • 2624 reflections with I > 2σ(I)
  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.159
  • S = 1.02
  • 4729 reflections
  • 344 parameters
  • 65 restraints
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045186/hb5723sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045186/hb5723Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Zhongshan Polytechnic for supporting this work.

supplementary crystallographic information

Comment

Metal coordination polymer based on cyanide group have raised intense interest due to their structural diversity and their potential applications in magnetic materials (Holmes & Girolami, 1999; Deng et al., 2008). Up to date, a large number of one-, two-, and three-dimensional coordination polymers have been prepared by the choice of metal-cyanide bridging centers and versatile secondary ligands such as 1,10-phenanthroline and 2,2-pyridine (Dyason et al., 1985; Chesnut et al., 1999; Zhao et al., 2004; Huang et al., 2004). Herein, we obtained one copper coordination polymer of [Cu(C12H10N2)(CN).C2H6O]n under hydrothermal condition, and its structure was reported.

As depicted in Fig. 1, each Cui ion is four-coordianted by two N atoms from one 1,10-phenanthroline (phen) ligand and two cyano ligands. The Cu-phen subunits are in turn interconnected by /m2-cyano ligands to form a 1D zigzag chain. These chains are further assembled by /p···/p stacking contacts between adjacent phen rings and extend to form a three-dimensional supramolecular network (Fig. 2). The interplanar distance between them is ca. 3.60 Å (symmetry operator for the 1,10-phenanthroline ligand: 1-x, 1-y, 2-z). The lattice ethanol molecule is independently disordered over two parts of 0.829 (7): 0.171 (7). (see refinement section for details).

Experimental

Copper(I) cyanide (0.089 g, 1 mmol) and 1,10-phenanthroline (0.1801 g, 1 mmol) were added to a mixture of water (5 ml) and ethanol (5 ml). The resultant mixture was sealed in a 20 ml stainless steel reactor with a Teflon liner and kept under autogenous pressure at 413 K for 48 h, and then cooled to room temperature at a rate of 5 K/min. Yellow blocks of (I) formed with a yield of approximately 58% based on 1,10-phenanthroline.

Refinement

The lattice ethanol molecules are arranged as symmetry related pairs around a center of inversion. In the original refinement the molecule showed significantly elongated thermal ellipsoids indicating disorder. The ethanol molecule was thus refined as being disordered over two sites in a ratio of 0.829 (7): 0.171 (7). Due to the significant overlap of the disordered atoms the following restraints and constraints were applied: The adps of the disordered atoms were restrained to be close to isotropic and those of equivalent atoms were set to be identical.

The C and N atoms of each bridging cyano groups are ambiguous and were refined to be same ratios and their equivalent atoms were set to be identical.

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93-0.97 and O—H = 1.2 Å, and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
ORTEP represention of (I), showing 30% probability displacement ellipsoids. Symmetry codes: (a) x, 1.5-y, 0.5+z.
Fig. 2.
View of the three-dimensional structure of the title compound.

Crystal data

[Cu(CN)(C12H10N2)]·0.5C2H6OF(000) = 1192
Mr = 292.8Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4800 reflections
a = 18.4896 (6) Åθ = 1.4–28.0°
b = 8.4033 (3) ŵ = 1.80 mm1
c = 16.5166 (5) ÅT = 293 K
β = 109.974 (2)°Block, yellow
V = 2411.88 (14) Å30.25 × 0.23 × 0.19 mm
Z = 8

Data collection

Bruker APEXII area-detector diffractometer4729 independent reflections
Radiation source: fine-focus sealed tube2624 reflections with I > 2σ(I)
graphiteRint = 0.090
[var phi] and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −22→22
Tmin = 0.662, Tmax = 0.726k = −9→10
21068 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0686P)2 + 1.9113P] where P = (Fo2 + 2Fc2)/3
4729 reflections(Δ/σ)max = 0.004
344 parametersΔρmax = 0.37 e Å3
65 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.19744 (4)0.57901 (10)0.46043 (5)0.0533 (3)
Cu20.32714 (4)0.65348 (10)0.77685 (4)0.0523 (3)
C10.2519 (3)0.5967 (7)0.5813 (4)0.0557 (15)0.50
N1'0.2519 (3)0.5967 (7)0.5813 (4)0.0557 (15)0.50
C20.2732 (3)0.7392 (7)0.3409 (3)0.0470 (13)0.50
N2'0.2732 (3)0.7392 (7)0.3409 (3)0.0470 (13)0.50
N10.2828 (3)0.6179 (7)0.6549 (3)0.0501 (14)0.50
C1'0.2828 (3)0.6179 (7)0.6549 (3)0.0501 (14)0.50
N20.2420 (3)0.6744 (7)0.3810 (3)0.0477 (14)0.50
C2'0.2420 (3)0.6744 (7)0.3810 (3)0.0477 (14)0.50
C30.0414 (4)0.7502 (8)0.4464 (4)0.0511 (16)
H30.07090.83830.47190.061*
C4−0.0382 (4)0.7600 (9)0.4252 (4)0.0624 (18)
H4−0.06100.85240.43630.075*
C5−0.0817 (4)0.6332 (10)0.3883 (4)0.0644 (19)
H5−0.13490.63800.37360.077*
C6−0.0470 (3)0.4939 (8)0.3722 (3)0.0472 (15)
C7−0.0889 (4)0.3551 (10)0.3317 (4)0.0605 (19)
H7−0.14230.35550.31430.073*
C8−0.0529 (4)0.2249 (9)0.3185 (4)0.0594 (18)
H8−0.08180.13750.29110.071*
C90.0284 (4)0.2175 (8)0.3455 (3)0.0491 (15)
C100.0687 (4)0.0835 (9)0.3361 (4)0.0640 (19)
H100.0424−0.00670.30860.077*
C110.1467 (5)0.0854 (9)0.3675 (5)0.071 (2)
H110.1741−0.00560.36390.085*
C120.1861 (4)0.2228 (9)0.4050 (4)0.0619 (18)
H120.23960.22190.42490.074*
C130.0718 (3)0.3522 (7)0.3842 (3)0.0390 (13)
C140.0331 (3)0.4941 (7)0.3959 (3)0.0397 (13)
C150.4760 (4)0.8556 (8)0.8029 (4)0.0519 (16)
H150.44370.93390.76980.062*
C160.5546 (4)0.8874 (9)0.8372 (4)0.0601 (18)
H160.57370.98530.82760.072*
C170.6029 (3)0.7741 (9)0.8847 (4)0.0586 (18)
H170.65540.79440.90810.070*
C180.5739 (3)0.6280 (8)0.8983 (4)0.0513 (17)
C190.6205 (4)0.5004 (10)0.9452 (4)0.0663 (19)
H190.67350.51410.96930.080*
C200.5893 (4)0.3616 (10)0.9550 (4)0.070 (2)
H200.62110.28080.98620.084*
C210.5079 (4)0.3337 (8)0.9189 (4)0.0519 (16)
C220.4723 (5)0.1913 (10)0.9253 (5)0.074 (2)
H220.50180.10720.95590.089*
C230.3964 (5)0.1732 (9)0.8881 (5)0.078 (2)
H230.37290.07720.89240.094*
C240.3532 (4)0.2993 (9)0.8432 (4)0.0617 (18)
H240.30050.28480.81680.074*
C250.4607 (3)0.4565 (7)0.8732 (3)0.0419 (14)
C260.4937 (3)0.6066 (7)0.8619 (3)0.0390 (14)
N30.0772 (2)0.6226 (6)0.4324 (3)0.0404 (12)
N40.1499 (3)0.3554 (6)0.4134 (3)0.0466 (12)
N50.4451 (2)0.7205 (6)0.8149 (3)0.0392 (11)
N60.3829 (3)0.4406 (6)0.8355 (3)0.0424 (12)
C270.1951 (6)0.5287 (13)0.0858 (7)0.100 (4)0.829 (7)
H27A0.22740.54760.05200.150*0.829 (7)
H27B0.17580.62830.09840.150*0.829 (7)
H27C0.15280.46200.05410.150*0.829 (7)
C280.2396 (8)0.450 (4)0.1658 (10)0.112 (6)0.829 (7)
H28A0.25620.34740.15220.135*0.829 (7)
H28B0.28530.51310.19400.135*0.829 (7)
O10.2007 (8)0.4284 (18)0.2226 (10)0.274 (9)0.829 (7)
H10.18730.51500.23550.411*0.829 (7)
C27'0.230 (3)0.475 (17)0.147 (6)0.100 (4)0.171 (7)
H27D0.20710.38460.11220.150*0.171 (7)
H27E0.19880.56740.12610.150*0.171 (7)
H27F0.23450.45530.20570.150*0.171 (7)
C28'0.309 (3)0.503 (8)0.142 (3)0.112 (6)0.171 (7)
H28C0.31460.44100.09510.135*0.171 (7)
H28D0.31450.61430.13040.135*0.171 (7)
O1'0.367 (3)0.459 (8)0.220 (4)0.274 (9)0.171 (7)
H1'0.36300.36490.22980.411*0.171 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0405 (4)0.0661 (6)0.0510 (4)−0.0090 (4)0.0126 (3)−0.0044 (4)
Cu20.0375 (4)0.0655 (6)0.0503 (4)0.0059 (4)0.0103 (3)−0.0013 (4)
C10.038 (3)0.074 (4)0.053 (3)0.005 (3)0.013 (3)0.002 (3)
N1'0.038 (3)0.074 (4)0.053 (3)0.005 (3)0.013 (3)0.002 (3)
C20.039 (3)0.054 (4)0.044 (3)−0.001 (3)0.009 (2)−0.001 (3)
N2'0.039 (3)0.054 (4)0.044 (3)−0.001 (3)0.009 (2)−0.001 (3)
C30.064 (4)0.041 (4)0.049 (3)0.002 (3)0.020 (3)0.003 (3)
C40.063 (5)0.054 (5)0.071 (4)0.021 (4)0.024 (4)0.008 (4)
C50.042 (4)0.082 (6)0.069 (4)0.012 (4)0.019 (3)0.014 (4)
C60.037 (3)0.059 (4)0.044 (3)−0.003 (3)0.012 (2)0.009 (3)
C70.036 (3)0.086 (6)0.055 (4)−0.017 (4)0.011 (3)0.008 (4)
C80.056 (4)0.063 (5)0.057 (4)−0.020 (4)0.016 (3)−0.008 (4)
C90.061 (4)0.047 (4)0.045 (3)−0.009 (3)0.025 (3)−0.004 (3)
C100.086 (6)0.056 (5)0.056 (4)−0.009 (4)0.031 (4)−0.008 (3)
C110.094 (6)0.050 (5)0.076 (5)0.017 (4)0.038 (4)−0.001 (4)
C120.062 (4)0.061 (5)0.063 (4)0.018 (4)0.022 (3)0.003 (4)
C130.042 (3)0.043 (4)0.035 (3)−0.001 (3)0.017 (2)0.001 (3)
C140.038 (3)0.046 (4)0.035 (3)−0.001 (3)0.012 (2)0.003 (3)
C150.055 (4)0.053 (4)0.049 (3)−0.007 (3)0.019 (3)0.004 (3)
C160.059 (4)0.067 (5)0.064 (4)−0.022 (4)0.033 (3)−0.001 (4)
C170.036 (3)0.080 (5)0.060 (4)−0.017 (4)0.015 (3)−0.008 (4)
C180.032 (3)0.072 (5)0.048 (3)0.001 (3)0.011 (3)−0.005 (3)
C190.039 (4)0.084 (6)0.061 (4)0.010 (4)−0.002 (3)0.003 (4)
C200.060 (5)0.087 (6)0.052 (4)0.034 (4)0.004 (3)0.011 (4)
C210.069 (4)0.041 (4)0.046 (3)0.014 (3)0.019 (3)0.003 (3)
C220.097 (6)0.059 (6)0.068 (4)0.021 (5)0.031 (4)0.009 (4)
C230.110 (7)0.045 (5)0.094 (6)−0.010 (5)0.053 (5)0.009 (4)
C240.065 (4)0.061 (5)0.064 (4)−0.021 (4)0.029 (3)−0.010 (4)
C250.041 (3)0.052 (4)0.032 (3)0.005 (3)0.011 (2)−0.006 (3)
C260.036 (3)0.048 (4)0.033 (3)−0.002 (3)0.011 (2)−0.008 (3)
N10.033 (3)0.064 (4)0.052 (3)0.010 (3)0.013 (2)−0.009 (3)
C1'0.033 (3)0.064 (4)0.052 (3)0.010 (3)0.013 (2)−0.009 (3)
N20.036 (3)0.060 (4)0.044 (3)−0.003 (3)0.011 (2)−0.001 (3)
C2'0.036 (3)0.060 (4)0.044 (3)−0.003 (3)0.011 (2)−0.001 (3)
N30.041 (3)0.041 (3)0.038 (2)0.000 (2)0.013 (2)0.000 (2)
N40.040 (3)0.058 (4)0.042 (2)0.010 (3)0.015 (2)−0.002 (2)
N50.039 (3)0.041 (3)0.036 (2)0.003 (2)0.011 (2)0.000 (2)
N60.047 (3)0.044 (3)0.041 (2)−0.006 (2)0.020 (2)−0.004 (2)
C270.084 (8)0.078 (8)0.118 (9)−0.019 (6)0.008 (6)−0.006 (7)
C280.100 (10)0.134 (17)0.119 (13)−0.017 (9)0.058 (9)−0.018 (11)
O10.205 (14)0.190 (14)0.35 (2)0.042 (11)0.002 (13)−0.103 (14)
C27'0.084 (8)0.078 (8)0.118 (9)−0.019 (6)0.008 (6)−0.006 (7)
C28'0.100 (10)0.134 (17)0.119 (13)−0.017 (9)0.058 (9)−0.018 (11)
O1'0.205 (14)0.190 (14)0.35 (2)0.042 (11)0.002 (13)−0.103 (14)

Geometric parameters (Å, °)

Cu1—C11.910 (6)C15—C161.393 (8)
Cu1—N1'1.910 (6)C15—H150.9300
Cu1—N21.944 (6)C16—C171.357 (9)
Cu1—C2'1.944 (6)C16—H160.9300
Cu1—N42.108 (5)C17—C181.389 (9)
Cu1—N32.142 (4)C17—H170.9300
Cu2—N2'i1.909 (6)C18—C261.409 (7)
Cu2—C2i1.909 (6)C18—C191.427 (9)
Cu2—N11.921 (5)C19—C201.336 (10)
Cu2—C1'1.921 (5)C19—H190.9300
Cu2—N62.126 (5)C20—C211.435 (9)
Cu2—N52.130 (4)C20—H200.9300
C1—N11.167 (7)C21—C221.387 (10)
C2—N21.154 (6)C21—C251.395 (8)
C2—Cu2ii1.909 (6)C22—C231.335 (10)
C3—N31.322 (7)C22—H220.9300
C3—C41.395 (9)C23—C241.380 (10)
C3—H30.9300C23—H230.9300
C4—C51.348 (9)C24—N61.332 (8)
C4—H40.9300C24—H240.9300
C5—C61.405 (9)C25—N61.365 (7)
C5—H50.9300C25—C261.441 (8)
C6—C141.395 (7)C26—N51.358 (7)
C6—C71.433 (9)C27—C281.454 (9)
C7—C81.337 (9)C27—H27A0.9600
C7—H70.9300C27—H27B0.9600
C8—C91.416 (8)C27—H27C0.9600
C8—H80.9300C28—O11.375 (9)
C9—C101.387 (9)C28—H28A0.9700
C9—C131.408 (8)C28—H28B0.9700
C10—C111.356 (9)O1—H10.8200
C10—H100.9300C27'—C28'1.503 (10)
C11—C121.393 (10)C27'—H27D0.9600
C11—H110.9300C27'—H27E0.9600
C12—N41.331 (8)C27'—H27F0.9600
C12—H120.9300C28'—O1'1.415 (10)
C13—N41.357 (7)C28'—H28C0.9700
C13—C141.437 (8)C28'—H28D0.9700
C14—N31.363 (7)O1'—H1'0.8200
C15—N51.316 (7)
C1—Cu1—N2118.7 (2)C20—C19—H19119.4
C1—Cu1—N4117.3 (2)C18—C19—H19119.4
N2—Cu1—N4109.8 (2)C19—C20—C21121.8 (6)
C1—Cu1—N3110.49 (19)C19—C20—H20119.1
N2—Cu1—N3115.55 (19)C21—C20—H20119.1
N4—Cu1—N378.53 (18)C22—C21—C25116.9 (6)
C2i—Cu2—N1122.6 (2)C22—C21—C20124.5 (7)
C2i—Cu2—N6114.1 (2)C25—C21—C20118.6 (6)
N1—Cu2—N6108.3 (2)C23—C22—C21121.0 (7)
C2i—Cu2—N5112.80 (19)C23—C22—H22119.5
N1—Cu2—N5112.18 (19)C21—C22—H22119.5
N6—Cu2—N578.45 (18)C22—C23—C24118.9 (7)
N1—C1—Cu1175.2 (5)C22—C23—H23120.5
N2—C2—Cu2ii178.6 (5)C24—C23—H23120.5
N3—C3—C4123.5 (6)N6—C24—C23123.6 (7)
N3—C3—H3118.2N6—C24—H24118.2
C4—C3—H3118.2C23—C24—H24118.2
C5—C4—C3118.9 (6)N6—C25—C21122.8 (6)
C5—C4—H4120.6N6—C25—C26117.0 (5)
C3—C4—H4120.6C21—C25—C26120.2 (5)
C4—C5—C6120.2 (6)N5—C26—C18123.2 (6)
C4—C5—H5119.9N5—C26—C25117.7 (5)
C6—C5—H5119.9C18—C26—C25119.1 (5)
C14—C6—C5117.1 (6)C1—N1—Cu2176.2 (5)
C14—C6—C7119.0 (6)C2—N2—Cu1173.2 (5)
C5—C6—C7123.9 (6)C3—N3—C14117.4 (5)
C8—C7—C6121.4 (6)C3—N3—Cu1130.2 (4)
C8—C7—H7119.3C14—N3—Cu1112.3 (4)
C6—C7—H7119.3C12—N4—C13117.3 (6)
C7—C8—C9121.3 (6)C12—N4—Cu1128.5 (4)
C7—C8—H8119.4C13—N4—Cu1114.1 (4)
C9—C8—H8119.4C15—N5—C26117.3 (5)
C10—C9—C13117.4 (6)C15—N5—Cu2129.6 (4)
C10—C9—C8123.6 (6)C26—N5—Cu2113.1 (4)
C13—C9—C8119.1 (6)C24—N6—C25116.6 (5)
C11—C10—C9119.3 (7)C24—N6—Cu2130.0 (4)
C11—C10—H10120.4C25—N6—Cu2113.4 (4)
C9—C10—H10120.4C28—C27—H27A109.5
C10—C11—C12120.4 (7)C28—C27—H27B109.5
C10—C11—H11119.8H27A—C27—H27B109.5
C12—C11—H11119.8C28—C27—H27C109.5
N4—C12—C11122.3 (6)H27A—C27—H27C109.5
N4—C12—H12118.8H27B—C27—H27C109.5
C11—C12—H12118.8O1—C28—C27114.6 (13)
N4—C13—C9123.3 (6)O1—C28—H28A108.6
N4—C13—C14117.0 (5)C27—C28—H28A108.6
C9—C13—C14119.7 (5)O1—C28—H28B108.6
N3—C14—C6122.8 (6)C27—C28—H28B108.6
N3—C14—C13117.8 (5)H28A—C28—H28B107.6
C6—C14—C13119.3 (5)C28—O1—H1109.5
N5—C15—C16123.3 (6)C28'—C27'—H27D109.5
N5—C15—H15118.3C28'—C27'—H27E109.5
C16—C15—H15118.3H27D—C27'—H27E109.5
C17—C16—C15119.4 (6)C28'—C27'—H27F109.5
C17—C16—H16120.3H27D—C27'—H27F109.5
C15—C16—H16120.3H27E—C27'—H27F109.5
C16—C17—C18119.9 (6)O1'—C28'—C27'111.5 (16)
C16—C17—H17120.0O1'—C28'—H28C109.3
C18—C17—H17120.0C27'—C28'—H28C109.3
C17—C18—C26116.9 (6)O1'—C28'—H28D109.3
C17—C18—C19123.9 (6)C27'—C28'—H28D109.3
C26—C18—C19119.2 (6)H28C—C28'—H28D108.0
C20—C19—C18121.1 (6)C28'—O1'—H1'109.5

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5723).

References

  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (1999). Inorg. Chem.38, 5484–5489. [PubMed]
  • Deng, H., Qiu, Y. C., Daiguebonne, C., Kerbellec, N., Guillou, O., Zeller, M. & Batten, S. R. (2008). Inorg. Chem.47, 5866–5872. [PubMed]
  • Dyason, J. S., Healy, P. C., Engelhardt, L. M., Pakawatchai, L. M., Patrick, V. A. & White, A. H. (1985). J. Chem. Soc. Dalton Trans pp. 839–844.
  • Holmes, S. M. & Girolami, G. S. (1999). J. Am. Chem. Soc.121, 5593–5594.
  • Huang, X. C., Zheng, S. L., Zhang, J. P. & Chen, X. M. (2004). Eur. J. Inorg. Chem. pp. 1024–1029.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, Q.-H., Wang, Q.-H. & Fang, R.-B. (2004). Transition Met. Chem.29, 144–148.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography