PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1600–m1601.
Published online 2010 November 20. doi:  10.1107/S1600536810046842
PMCID: PMC3011793

Diiodido(2,3,5,6-tetrapyridin-2-yl­pyrazine-κ3 N 2,N 1,N 6)zinc(II)

Abstract

In the title compound, [ZnI2(C24H16N6)], the ZnII ion is five-coordinated in a distorted trigonal-bipyramidal geometry by an N,N,N-tridentate 2,3,5,6-tetra-2-pyridinylpyrazine ligand and two iodide ions. The I ions both occupy equatorial sites. Within the ligand, the dihedral angles between the central pyrazine ring and the two chelating pyridine (py) rings are 14.74 (17) and 26.72 (18)°. The equivalent angles for the non-coordinating py rings are 28.63 (16) and 42.19 (17)°. There is no aromatic π–π stacking in the crystal.

Related literature

For the synthesis of the ligand, see: Goodwin & Lyons (1959 [triangle]). For the structure of the free ligand, see: Bock et al. (1992 [triangle]); Greaves & Stoeckli-Evans (1992 [triangle]). For related structures, see: Ahmadi et al. (2010 [triangle]); Alizadeh et al. (2009 [triangle]); Carranza et al. (2004 [triangle]); Graf et al. (1993 [triangle], 1997 [triangle]); Hadadzadeh et al. (2006 [triangle]); Laine et al. (1995 [triangle]); Morsali & Ramazani (2005 [triangle]); Sakai & Kurashima (2003 [triangle]); Seyed Sadjadi et al. (2008 [triangle]); Yamada et al. (2000 [triangle]); Zhang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1600-scheme1.jpg

Experimental

Crystal data

  • [ZnI2(C24H16N6)]
  • M r = 707.60
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1600-efi1.jpg
  • a = 10.659 (2) Å
  • b = 10.770 (2) Å
  • c = 12.277 (3) Å
  • α = 64.31 (3)°
  • β = 82.41 (3)°
  • γ = 77.71 (3)°
  • V = 1239.7 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.50 mm−1
  • T = 120 K
  • 0.49 × 0.35 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.240, T max = 0.352
  • 14023 measured reflections
  • 6625 independent reflections
  • 6259 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.097
  • S = 1.11
  • 6625 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 2.47 e Å−3
  • Δρmin = −2.65 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046842/hb5732sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046842/hb5732Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

Goodwin & Lyons (1959) were reported the synthesis of 2,3,5,6-tetra-2-pyridinyl-pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) were determined the structure of tppz by single-crystal X-ray diffraction methods. tppz is a good bis-tridentate bridging ligand, and numerous complexes with tppz have been prepared, such as that of ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yadama et al., 2000), cadmium (Seyed Sadjadi et al., 2008) and Lead (Morsali & Ramazani, 2005). For further investigation of 2,3,5,6-tetra-2-pyridinyl-pyrazine, we synthesis the title complex, and report herein in crystal structure.

In the title compound, (Fig. 1), the ZnII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by three N atoms from one 2,3,5,6-tetra-2-pyridinyl-pyrazine and two terminal I. The Zn—N and Zn—I bond lengths and angles (Table 1) are within normal range of [ZnCl2(tppz)], (Graf et al., 1993), [ZnBr2(tppz)], (Ahmadi et al., 2010) and [ZnI2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.

Experimental

For the preparation of the title compound, a solution of 2,3,5,6-tetra-2-pyridinyl-pyrazine (0.60 g, 1.5 mmol) in HCCl3 (25 ml) was added to a solution of ZnI2 (0.48 g, 1.50 mmol) in methanol (25 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Yellow blocks were isolated after one week (yield; 0.81 g, 76.3%).

Refinement

All H atoms were positioned geometrically, with C—H=0.93Å for aromatics H and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq.

Figures

Fig. 1.
The unit-cell of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The unit-cell packing diagram for the title molecule.

Crystal data

[ZnI2(C24H16N6)]Z = 2
Mr = 707.60F(000) = 676
Triclinic, P1Dx = 1.895 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.659 (2) ÅCell parameters from 14023 reflections
b = 10.770 (2) Åθ = 2.2–29.2°
c = 12.277 (3) ŵ = 3.50 mm1
α = 64.31 (3)°T = 120 K
β = 82.41 (3)°Block, yellow
γ = 77.71 (3)°0.49 × 0.35 × 0.30 mm
V = 1239.7 (6) Å3

Data collection

Bruker SMART CCD diffractometer6625 independent reflections
Radiation source: fine-focus sealed tube6259 reflections with I > 2σ(I)
graphiteRint = 0.048
phi and ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −14→14
Tmin = 0.240, Tmax = 0.352k = −14→13
14023 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.0526P)2 + 2.2743P] where P = (Fo2 + 2Fc2)/3
6625 reflections(Δ/σ)max = 0.018
298 parametersΔρmax = 2.47 e Å3
0 restraintsΔρmin = −2.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3744 (3)0.1483 (4)0.0215 (3)0.0246 (6)
H10.45590.10990.05210.029*
C20.3592 (3)0.1816 (4)−0.0992 (3)0.0256 (6)
H20.42780.1627−0.14810.031*
C30.2382 (3)0.2439 (3)−0.1441 (3)0.0207 (6)
H30.22490.2688−0.22490.025*
C40.1365 (3)0.2695 (3)−0.0691 (3)0.0182 (5)
H40.05560.3145−0.09910.022*
C50.1587 (3)0.2263 (3)0.0522 (3)0.0147 (5)
C60.0586 (3)0.2431 (3)0.1435 (3)0.0141 (5)
C7−0.0751 (3)0.2860 (3)0.1297 (3)0.0154 (5)
C8−0.1455 (3)0.2681 (3)0.0417 (3)0.0168 (5)
C9−0.2477 (3)0.3674 (4)−0.0189 (4)0.0291 (7)
H9−0.27440.4490−0.00730.035*
C10−0.3089 (4)0.3413 (5)−0.0977 (4)0.0403 (10)
H10−0.37750.4058−0.14080.048*
C11−0.2661 (4)0.2169 (5)−0.1112 (4)0.0355 (9)
H11−0.30560.1970−0.16350.043*
C12−0.1640 (3)0.1237 (4)−0.0453 (3)0.0231 (6)
H12−0.13630.0403−0.05390.028*
C130.2711 (3)0.0708 (4)0.5572 (3)0.0222 (6)
H130.35980.04210.55540.027*
C140.2053 (3)0.0432 (4)0.6687 (3)0.0243 (6)
H140.2493−0.00190.74000.029*
C150.0730 (3)0.0842 (4)0.6715 (3)0.0231 (6)
H150.02670.06500.74500.028*
C160.0100 (3)0.1546 (3)0.5628 (3)0.0193 (5)
H16−0.07860.18350.56240.023*
C170.0834 (3)0.1805 (3)0.4550 (3)0.0152 (5)
C180.0266 (3)0.2466 (3)0.3346 (3)0.0143 (5)
C19−0.0955 (3)0.3294 (3)0.3007 (3)0.0150 (5)
C20−0.1726 (3)0.4133 (3)0.3629 (3)0.0146 (5)
C21−0.3050 (3)0.4520 (3)0.3513 (3)0.0161 (5)
H21−0.34720.42110.30850.019*
C22−0.3724 (3)0.5377 (3)0.4050 (3)0.0180 (5)
H22−0.46070.56720.39720.022*
C23−0.3068 (3)0.5785 (3)0.4703 (3)0.0200 (6)
H23−0.35040.63450.50840.024*
C24−0.1741 (3)0.5343 (3)0.4782 (3)0.0216 (6)
H24−0.13050.56110.52300.026*
N10.2767 (2)0.1693 (3)0.0955 (2)0.0184 (5)
N2−0.1032 (2)0.1480 (3)0.0301 (2)0.0172 (5)
N30.1029 (2)0.2183 (3)0.2492 (2)0.0140 (4)
N4−0.1457 (2)0.3385 (3)0.2030 (2)0.0158 (4)
N50.2114 (2)0.1371 (3)0.4525 (2)0.0172 (5)
N6−0.1068 (2)0.4546 (3)0.4237 (3)0.0187 (5)
Zn10.30085 (3)0.13103 (3)0.28390 (3)0.01425 (8)
I10.373663 (19)−0.137621 (19)0.369751 (17)0.01892 (7)
I20.48284 (2)0.27145 (2)0.23922 (2)0.02865 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0166 (14)0.0320 (17)0.0233 (15)0.0029 (12)0.0006 (11)−0.0136 (13)
C20.0217 (15)0.0316 (17)0.0224 (15)−0.0029 (13)0.0067 (12)−0.0133 (13)
C30.0238 (15)0.0206 (13)0.0167 (13)−0.0053 (11)0.0002 (11)−0.0065 (11)
C40.0173 (13)0.0208 (13)0.0147 (12)−0.0013 (10)−0.0012 (10)−0.0066 (10)
C50.0115 (11)0.0157 (12)0.0170 (12)−0.0004 (9)−0.0001 (9)−0.0079 (10)
C60.0125 (12)0.0164 (12)0.0153 (12)0.0006 (9)−0.0029 (9)−0.0092 (10)
C70.0121 (12)0.0170 (12)0.0189 (13)0.0017 (9)−0.0045 (10)−0.0101 (10)
C80.0129 (12)0.0209 (13)0.0177 (13)0.0024 (10)−0.0052 (10)−0.0103 (11)
C90.0224 (15)0.0323 (17)0.0384 (19)0.0111 (13)−0.0165 (14)−0.0231 (15)
C100.0318 (19)0.048 (2)0.051 (2)0.0170 (17)−0.0308 (19)−0.033 (2)
C110.038 (2)0.044 (2)0.037 (2)0.0005 (17)−0.0191 (17)−0.0266 (18)
C120.0244 (15)0.0249 (15)0.0244 (15)−0.0054 (12)−0.0013 (12)−0.0141 (12)
C130.0166 (13)0.0302 (16)0.0211 (14)0.0069 (11)−0.0084 (11)−0.0148 (12)
C140.0257 (16)0.0253 (15)0.0206 (14)0.0048 (12)−0.0095 (12)−0.0101 (12)
C150.0252 (15)0.0259 (15)0.0160 (13)0.0011 (12)−0.0007 (11)−0.0092 (12)
C160.0150 (12)0.0229 (14)0.0200 (14)−0.0003 (11)−0.0001 (10)−0.0106 (11)
C170.0128 (12)0.0173 (12)0.0177 (13)0.0024 (9)−0.0031 (10)−0.0107 (10)
C180.0104 (11)0.0168 (12)0.0183 (13)−0.0003 (9)−0.0016 (9)−0.0104 (10)
C190.0101 (11)0.0186 (12)0.0190 (13)0.0018 (9)−0.0027 (9)−0.0119 (10)
C200.0116 (11)0.0167 (12)0.0155 (12)0.0025 (9)−0.0028 (9)−0.0082 (10)
C210.0095 (11)0.0190 (12)0.0196 (13)0.0000 (10)−0.0021 (9)−0.0088 (11)
C220.0103 (11)0.0191 (13)0.0224 (13)−0.0003 (10)0.0021 (10)−0.0085 (11)
C230.0206 (14)0.0201 (13)0.0210 (14)0.0005 (11)0.0016 (11)−0.0127 (11)
C240.0174 (14)0.0262 (15)0.0272 (15)0.0033 (11)−0.0054 (11)−0.0186 (13)
N10.0124 (11)0.0227 (12)0.0179 (11)0.0028 (9)−0.0029 (9)−0.0087 (10)
N20.0171 (11)0.0189 (11)0.0179 (11)−0.0017 (9)−0.0026 (9)−0.0100 (9)
N30.0077 (9)0.0180 (11)0.0169 (11)0.0026 (8)−0.0019 (8)−0.0098 (9)
N40.0119 (10)0.0169 (11)0.0208 (12)0.0015 (8)−0.0042 (9)−0.0108 (9)
N50.0136 (11)0.0214 (11)0.0179 (11)0.0033 (9)−0.0045 (9)−0.0113 (10)
N60.0127 (11)0.0233 (12)0.0245 (13)0.0018 (9)−0.0044 (9)−0.0154 (10)
Zn10.00936 (14)0.01684 (15)0.01719 (16)0.00192 (11)−0.00304 (11)−0.00892 (12)
I10.02016 (11)0.01584 (10)0.02007 (10)0.00168 (7)−0.00295 (7)−0.00848 (7)
I20.02559 (12)0.02774 (12)0.03527 (13)−0.01186 (9)−0.00476 (9)−0.01144 (10)

Geometric parameters (Å, °)

C1—N11.337 (4)C14—C151.385 (5)
C1—C21.389 (5)C14—H140.9300
C1—H10.9300C15—C161.396 (4)
C2—C31.384 (5)C15—H150.9300
C2—H20.9300C16—C171.393 (4)
C3—C41.389 (4)C16—H160.9300
C3—H30.9300C17—N51.346 (4)
C4—C51.391 (4)C17—C181.483 (4)
C4—H40.9300C18—N31.341 (4)
C5—N11.344 (4)C18—C191.411 (4)
C5—C61.485 (4)C19—N41.334 (4)
C6—N31.336 (4)C19—C201.481 (4)
C6—C71.410 (4)C20—N61.345 (4)
C7—N41.332 (4)C20—C211.391 (4)
C7—C81.492 (4)C21—C221.387 (4)
C8—N21.339 (4)C21—H210.9300
C8—C91.383 (4)C22—C231.382 (4)
C9—C101.386 (5)C22—H220.9300
C9—H90.9300C23—C241.395 (4)
C10—C111.394 (6)C23—H230.9300
C10—H100.9300C24—N61.344 (4)
C11—C121.382 (5)C24—H240.9300
C11—H110.9300Zn1—N12.207 (3)
C12—N21.337 (4)Zn1—N32.137 (2)
C12—H120.9300Zn1—N52.184 (3)
C13—N51.339 (4)Zn1—I22.5691 (8)
C13—C141.392 (5)Zn1—I12.5888 (10)
C13—H130.9300
N1—C1—C2122.7 (3)C15—C16—H16120.8
N1—C1—H1118.7N5—C17—C16122.3 (3)
C2—C1—H1118.7N5—C17—C18114.3 (3)
C3—C2—C1117.7 (3)C16—C17—C18123.2 (3)
C3—C2—H2121.1N3—C18—C19117.3 (3)
C1—C2—H2121.1N3—C18—C17113.7 (2)
C2—C3—C4120.2 (3)C19—C18—C17128.9 (3)
C2—C3—H3119.9N4—C19—C18118.9 (3)
C4—C3—H3119.9N4—C19—C20116.1 (2)
C3—C4—C5118.3 (3)C18—C19—C20124.9 (3)
C3—C4—H4120.8N6—C20—C21123.3 (3)
C5—C4—H4120.8N6—C20—C19116.3 (2)
N1—C5—C4121.6 (3)C21—C20—C19120.3 (3)
N1—C5—C6114.1 (3)C22—C21—C20118.4 (3)
C4—C5—C6124.3 (3)C22—C21—H21120.8
N3—C6—C7117.3 (3)C20—C21—H21120.8
N3—C6—C5115.1 (2)C23—C22—C21119.1 (3)
C7—C6—C5127.6 (3)C23—C22—H22120.4
N4—C7—C6119.4 (3)C21—C22—H22120.4
N4—C7—C8116.8 (2)C22—C23—C24118.9 (3)
C6—C7—C8123.7 (3)C22—C23—H23120.6
N2—C8—C9124.2 (3)C24—C23—H23120.6
N2—C8—C7114.2 (2)N6—C24—C23122.7 (3)
C9—C8—C7121.6 (3)N6—C24—H24118.6
C8—C9—C10117.7 (3)C23—C24—H24118.6
C8—C9—H9121.1C1—N1—C5119.3 (3)
C10—C9—H9121.1C1—N1—Zn1123.3 (2)
C9—C10—C11119.0 (3)C5—N1—Zn1117.2 (2)
C9—C10—H10120.5C12—N2—C8117.4 (3)
C11—C10—H10120.5C6—N3—C18122.0 (2)
C12—C11—C10118.8 (3)C6—N3—Zn1119.27 (19)
C12—C11—H11120.6C18—N3—Zn1118.77 (19)
C10—C11—H11120.6C7—N4—C19120.4 (2)
N2—C12—C11122.9 (3)C13—N5—C17118.9 (3)
N2—C12—H12118.5C13—N5—Zn1122.5 (2)
C11—C12—H12118.5C17—N5—Zn1116.77 (19)
N5—C13—C14122.4 (3)C24—N6—C20117.5 (3)
N5—C13—H13118.8N3—Zn1—N574.10 (10)
C14—C13—H13118.8N3—Zn1—N173.73 (10)
C15—C14—C13118.8 (3)N5—Zn1—N1147.80 (9)
C15—C14—H14120.6N3—Zn1—I2125.51 (7)
C13—C14—H14120.6N5—Zn1—I2102.61 (8)
C14—C15—C16119.3 (3)N1—Zn1—I297.18 (8)
C14—C15—H15120.4N3—Zn1—I1119.54 (8)
C16—C15—H15120.4N5—Zn1—I196.46 (8)
C17—C16—C15118.3 (3)N1—Zn1—I197.92 (8)
C17—C16—H16120.8I2—Zn1—I1114.90 (3)
N1—C1—C2—C32.6 (5)C6—C5—N1—Zn1−5.3 (3)
C1—C2—C3—C4−0.9 (5)C11—C12—N2—C80.6 (5)
C2—C3—C4—C5−2.4 (5)C9—C8—N2—C120.2 (5)
C3—C4—C5—N14.3 (5)C7—C8—N2—C12178.5 (3)
C3—C4—C5—C6−178.3 (3)C7—C6—N3—C18−6.9 (4)
N1—C5—C6—N39.1 (4)C5—C6—N3—C18171.2 (3)
C4—C5—C6—N3−168.5 (3)C7—C6—N3—Zn1173.1 (2)
N1—C5—C6—C7−173.1 (3)C5—C6—N3—Zn1−8.8 (3)
C4—C5—C6—C79.3 (5)C19—C18—N3—C6−12.5 (4)
N3—C6—C7—N419.3 (4)C17—C18—N3—C6165.6 (3)
C5—C6—C7—N4−158.5 (3)C19—C18—N3—Zn1167.5 (2)
N3—C6—C7—C8−156.8 (3)C17—C18—N3—Zn1−14.4 (3)
C5—C6—C7—C825.5 (5)C6—C7—N4—C19−11.1 (4)
N4—C7—C8—N2−138.0 (3)C8—C7—N4—C19165.1 (3)
C6—C7—C8—N238.1 (4)C18—C19—N4—C7−8.9 (4)
N4—C7—C8—C940.4 (5)C20—C19—N4—C7168.9 (3)
C6—C7—C8—C9−143.5 (3)C14—C13—N5—C171.0 (5)
N2—C8—C9—C10−0.8 (6)C14—C13—N5—Zn1−162.8 (3)
C7—C8—C9—C10−179.0 (4)C16—C17—N5—C13−2.4 (5)
C8—C9—C10—C110.6 (7)C18—C17—N5—C13−177.3 (3)
C9—C10—C11—C120.1 (7)C16—C17—N5—Zn1162.4 (2)
C10—C11—C12—N2−0.7 (7)C18—C17—N5—Zn1−12.6 (3)
N5—C13—C14—C150.9 (5)C23—C24—N6—C20−2.2 (5)
C13—C14—C15—C16−1.5 (5)C21—C20—N6—C241.8 (5)
C14—C15—C16—C170.2 (5)C19—C20—N6—C24178.2 (3)
C15—C16—C17—N51.7 (5)C6—N3—Zn1—N5−173.8 (2)
C15—C16—C17—C18176.2 (3)C18—N3—Zn1—N56.2 (2)
N5—C17—C18—N317.4 (4)C6—N3—Zn1—N14.6 (2)
C16—C17—C18—N3−157.4 (3)C18—N3—Zn1—N1−175.4 (2)
N5—C17—C18—C19−164.7 (3)C6—N3—Zn1—I291.9 (2)
C16—C17—C18—C1920.4 (5)C18—N3—Zn1—I2−88.2 (2)
N3—C18—C19—N420.8 (4)C6—N3—Zn1—I1−85.4 (2)
C17—C18—C19—N4−156.9 (3)C18—N3—Zn1—I194.6 (2)
N3—C18—C19—C20−156.7 (3)C13—N5—Zn1—N3168.2 (3)
C17—C18—C19—C2025.5 (5)C17—N5—Zn1—N34.1 (2)
N4—C19—C20—N6−152.2 (3)C13—N5—Zn1—N1165.4 (2)
C18—C19—C20—N625.4 (4)C17—N5—Zn1—N11.3 (3)
N4—C19—C20—C2124.3 (4)C13—N5—Zn1—I2−68.1 (3)
C18—C19—C20—C21−158.1 (3)C17—N5—Zn1—I2127.8 (2)
N6—C20—C21—C220.1 (5)C13—N5—Zn1—I149.3 (3)
C19—C20—C21—C22−176.1 (3)C17—N5—Zn1—I1−114.8 (2)
C20—C21—C22—C23−1.6 (4)C1—N1—Zn1—N3175.7 (3)
C21—C22—C23—C241.2 (5)C5—N1—Zn1—N30.7 (2)
C22—C23—C24—N60.8 (5)C1—N1—Zn1—N5178.5 (2)
C2—C1—N1—C5−0.8 (5)C5—N1—Zn1—N53.6 (3)
C2—C1—N1—Zn1−175.6 (3)C1—N1—Zn1—I250.7 (3)
C4—C5—N1—C1−2.7 (5)C5—N1—Zn1—I2−124.2 (2)
C6—C5—N1—C1179.6 (3)C1—N1—Zn1—I1−65.8 (3)
C4—C5—N1—Zn1172.4 (2)C5—N1—Zn1—I1119.3 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5732).

References

  • Ahmadi, R., Kalateh, K. & Amani, V. (2010). Acta Cryst. E66, m959–m960. [PMC free article] [PubMed]
  • Alizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439–m1440. [PMC free article] [PubMed]
  • Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed.31, 299–301.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS, Madison, Wisconsin, USA.
  • Carranza, J., Sletten, J., Brennan, C., Lloret, F., Canoa, J. & Julve, M. (2004). Dalton Trans. pp. 3997–4005. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Goodwin, H. A. & Lyons, F. (1959). J. Am. Chem. Soc.81, 6415–6422.
  • Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239–246.
  • Graf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). Inorg. Chim. Acta, 257, 89–97.
  • Greaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269–2271.
  • Hadadzadeh, H., Yap, G. P. A. & Crutchley, R. J. (2006). Acta Cryst. E62, m2002–m2004.
  • Laine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem.34, 5156–5165.
  • Morsali, A. & Ramazani, A. (2005). Z. Anorg. Allg. Chem.631, 1759–1760.
  • Sakai, K. & Kurashima, M. (2003). Acta Cryst. E59, m411–m413.
  • Seyed Sadjadi, M., Ebadi, A., Zare, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1050–m1051. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yamada, Y., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 1843–1844.
  • Zhang, L., Zhao, X.-H. & Zhao, Y. (2005). Acta Cryst. E61, m1760–m1761.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography