PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3199.
Published online 2010 November 17. doi:  10.1107/S1600536810046568
PMCID: PMC3011792

4-Chloro-N-methyl-2-(1,2,3,4-tetra­hydro­isoquinolin-1-yl)aniline

Abstract

The racemic title compound, C16H17ClN2, shows a tetra­hydro­isoquinoline skeleton with a 4-chloro-N-methyl­aniline group linked to the C atom at position 1. The dihedral angle between the benzene rings is 85.82 (4)°. An intra­molecular N—H(...)N hydrogen bond occurs. In the crystal, mol­ecules are linked through inter­molecular C—H(...)π inter­actions.

Related literature

For the use of diamine ligands in enanti­oselective hydrogenation of ketones, see: Xie et al. (2009 [triangle]); Morilla et al. (2007 [triangle]); Aitali et al. (1995 [triangle], 2000a [triangle]); Ohkuma et al. (1995 [triangle]). For related structures, see: Aitali et al. (2000b [triangle]); Nakahara et al. (1998 [triangle]); Suna (2003 [triangle]); Vedejs et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3199-scheme1.jpg

Experimental

Crystal data

  • C16H17ClN2
  • M r = 272.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3199-efi1.jpg
  • a = 22.055 (4) Å
  • b = 6.9269 (14) Å
  • c = 20.699 (4) Å
  • β = 119.46 (3)°
  • V = 2753.4 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 100 K
  • 0.57 × 0.54 × 0.34 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.854, T max = 0.917
  • 10809 measured reflections
  • 3133 independent reflections
  • 2995 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.092
  • S = 1.05
  • 3133 reflections
  • 179 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997) [triangle]; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046568/bg2371sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046568/bg2371Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the SCCYT (Universidad de Cádiz) for the data collection and the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía for financial support.

supplementary crystallographic information

Comment

We have been focusing our research on the use of diamines which can lead to the synthesis of chiral metal complexes with application, for example, as catalysts in asymmetric hydrogenation processes (Xie et al., 2009; Ohkuma et al., 1995); in the asymmetric transfer hydrogenation (Aitali et al., 2000a; Morilla et al., 2007; Aitali et al., 1995). As part of our study, we came across (-)-1-[5-chloro-2-(methylamino)-phenyl]-1,2,3–4-tetrahydro-isoquinolin, an interesting chiral diamine capable of forming chelates with transition metal centres (Aitali et al., 2000b). Here we report the crystal structure of a racemic melange containing R and S diamine forms (S.G. C2/c) . The molecule shows a tetrahydro-isoquinoline skeleton with a [4-chloro-phenyl]-N-methyl- amine group linked to carbon 1. Bond lengths and angles are normal and correspond to those observed in related compounds (Nakahara et al. (1998); Suna (2003); Vedejs et al. (1999)). The dihedral angle formed by the two flat six-membered rings is 85.82 (4)°. The molecule contains an intramolecular hydrogen bond between N2 of the amine side-chain and the quinoline N1 with a N–N distance of 2.907 (2) Å. In the crystal, molecules are linked through intermolecular C—H···π interactions (Table 1, Fig.2). These interactions build molecular rows in the direction parallel to the b axis (Fig.3).

Experimental

(-)-1-[5-chloro-2-(methylamino)-phenyl]-1,2,3–4-tetrahydro-isoquinoline tartrate was purchased from Aldrich chemical companies (98% purity) and used without further purification. NMR studies were performed on a Bruker Avance 300 spectrometer in CDCl3, chemicals shifts are given in p.p.m. relative to external TMS and coupling constant (J) in Hz. Preparation of ligands: In a typical experiment, a solution of (-)-1-[5-chloro-2-(methylamino)-phenyl] -1,2,3–4-tetrahydro-isoquinoline tartrate (2 g, 2.8 mmol) in 50 ml of H2O distilled, was add to Na2CO3 (1.18 g, 11.2 mmol) in 10 ml of distilled H2O. The mixture was stirred for appropriate time at room temperature, and extracted with diethyl ether (3*25 ml), the organic layer was dried over Na2SO4, and the solvent was evaporated to dryness leading to a yellow solid with 96% yielding. The solid was recrystallized from ethyl acetate solution. 1H NMR: 2.65(m, 2H), 2.70 (s, 3H), 2.92 (m, 2H), 4.02 (br, s, 1H, NH); 4.54 (s, 1H), 6.81–6.88 (m, 3H, Ar), 7.0- 7.43 (m, 4H, Ar), 13C NMR: 32.9, 35.78, 44.4, 53.5, 114.06, 122.4, 125.7, 126.2, 127.3, 128.03, 128.12, 128.23, 129.03, 139.48, 141.86, 143. 25.

Refinement

H atoms were positioned geometrically; those attached to C were treated as riding, while the coordinates of those attached to N were refined. In all cases, Uiso(H) = 1.2 Ueq(Host).

Figures

Fig. 1.
Molecule of (I), with the atomic numbering and 50% probability displacement ellipsoids, showing intramolecular N—H···N hydrogen bond.
Fig. 2.
A view normal to (010) of the C–H···centroids interactions (dotted lines) in the crystal structure of the title compound; Cg1 and Cg2 denote the centroids of the C1-C4,C8,C9 and C10-C15 rings respectively. Symmetry: (i) ...
Fig. 3.
Packing diagram of the title molecule showing molecular alignment along b axis.

Crystal data

C16H17ClN2F(000) = 1152
Mr = 272.77Dx = 1.316 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8084 reflections
a = 22.055 (4) Åθ = 2.2–27.5°
b = 6.9269 (14) ŵ = 0.27 mm1
c = 20.699 (4) ÅT = 100 K
β = 119.46 (3)°Block, orange
V = 2753.4 (12) Å30.57 × 0.54 × 0.34 mm
Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer3133 independent reflections
Radiation source: sealed X-ray tube, Bruker SMART APEX2995 reflections with I > 2σ(I)
graphiteRint = 0.021
1700 ω scan frames, 0.3 deg, 10 secθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −28→24
Tmin = 0.854, Tmax = 0.917k = −8→8
10809 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0498P)2 + 2.3515P] where P = (Fo2 + 2Fc2)/3
3133 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Experimental. Bruker SMART APEX three-circle diffractometer with CCD area detector, sealed X-ray tube, graphite monochromator. A hemisphere of the reciprocal space up to theta(max) = 27.53 ° was measured by omega scan frames with delta(omega) = 0.30 ° and 10 sec per frame, 1700 frames were recorded using program SMART (Bruker). Frame data evaluation and integration were done with program SAINT+(Bruker); Lattice parameters by least-squares refinement of the geometric parameters of the strongest reflections with program SAINT + (Bruker). Correction for absorption and crystal decay (insignificant) were applied by semi-empirical method from equivalents using program SADABS (G.M. Sheldrick, version of 2001, University of Goettingen, Germany). Data reduction was done with program XPREP (BRUKER).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.108112 (14)0.57631 (5)0.118305 (16)0.02561 (11)
N10.37252 (6)0.11416 (15)0.18002 (6)0.0220 (2)
H1A0.4240 (9)0.385 (3)0.2397 (9)0.029*
N20.41317 (5)0.49781 (15)0.24404 (5)0.0187 (2)
H2A0.3514 (8)0.060 (2)0.2039 (9)0.024*
C10.43262 (6)0.30992 (18)0.02866 (6)0.0218 (2)
H10.46850.24390.02490.026*
C20.40605 (7)0.47964 (19)−0.01047 (7)0.0239 (3)
H20.42380.5298−0.04060.029*
C30.35321 (7)0.57662 (18)−0.00561 (7)0.0237 (3)
H30.33480.6934−0.03220.028*
C40.32747 (6)0.50152 (17)0.03840 (6)0.0202 (2)
H40.29120.56760.04150.024*
C50.32195 (6)0.24498 (16)0.12260 (6)0.0176 (2)
H50.28100.16550.08770.021*
C60.39284 (7)−0.03821 (18)0.14479 (8)0.0257 (3)
H6A0.3508−0.09540.10270.031*
H6B0.4184−0.14180.18110.031*
C70.43893 (7)0.05077 (18)0.11740 (7)0.0237 (3)
H7A0.48510.08030.16040.028*
H7B0.4458−0.04350.08560.028*
C80.40763 (6)0.23365 (17)0.07376 (6)0.0185 (2)
C90.35403 (6)0.33045 (16)0.07817 (6)0.0167 (2)
C100.29589 (6)0.39723 (16)0.15549 (6)0.0164 (2)
C110.34221 (6)0.51954 (16)0.21409 (6)0.0163 (2)
C120.31372 (6)0.66378 (17)0.23897 (6)0.0190 (2)
H120.34400.74860.27750.023*
C130.24199 (6)0.68467 (17)0.20830 (6)0.0201 (2)
H130.22340.78400.22510.024*
C140.19822 (6)0.55940 (17)0.15324 (6)0.0188 (2)
C150.22449 (6)0.41698 (16)0.12642 (6)0.0178 (2)
H150.19350.33290.08810.021*
C160.46083 (6)0.59747 (19)0.31214 (7)0.0237 (3)
H16A0.45750.73700.30310.036*
H16B0.50860.55440.32860.036*
H16C0.44860.56830.35060.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01574 (16)0.03106 (18)0.03046 (17)0.00491 (11)0.01170 (12)0.00590 (11)
N10.0285 (5)0.0173 (5)0.0266 (5)0.0049 (4)0.0185 (5)0.0048 (4)
N20.0156 (5)0.0195 (5)0.0213 (5)−0.0006 (4)0.0093 (4)−0.0021 (4)
C10.0184 (5)0.0266 (6)0.0220 (5)−0.0013 (5)0.0113 (5)−0.0037 (5)
C20.0261 (6)0.0278 (6)0.0216 (5)−0.0048 (5)0.0147 (5)−0.0015 (5)
C30.0282 (6)0.0220 (6)0.0217 (6)0.0010 (5)0.0129 (5)0.0031 (4)
C40.0213 (6)0.0201 (6)0.0199 (5)0.0014 (4)0.0107 (4)−0.0008 (4)
C50.0187 (5)0.0153 (5)0.0208 (5)−0.0009 (4)0.0112 (4)−0.0020 (4)
C60.0320 (7)0.0160 (5)0.0347 (6)0.0045 (5)0.0208 (6)0.0022 (5)
C70.0236 (6)0.0221 (6)0.0280 (6)0.0057 (5)0.0147 (5)0.0018 (5)
C80.0171 (5)0.0191 (5)0.0185 (5)−0.0013 (4)0.0083 (4)−0.0032 (4)
C90.0171 (5)0.0175 (5)0.0157 (5)−0.0020 (4)0.0082 (4)−0.0026 (4)
C100.0181 (5)0.0157 (5)0.0180 (5)−0.0003 (4)0.0109 (4)0.0006 (4)
C110.0169 (5)0.0164 (5)0.0175 (5)−0.0005 (4)0.0100 (4)0.0015 (4)
C120.0207 (6)0.0186 (5)0.0191 (5)−0.0012 (4)0.0109 (4)−0.0023 (4)
C130.0228 (6)0.0194 (5)0.0226 (5)0.0038 (4)0.0146 (5)0.0014 (4)
C140.0147 (5)0.0222 (6)0.0205 (5)0.0027 (4)0.0094 (4)0.0049 (4)
C150.0177 (5)0.0187 (5)0.0174 (5)−0.0013 (4)0.0088 (4)0.0013 (4)
C160.0177 (5)0.0293 (6)0.0213 (5)−0.0015 (5)0.0074 (5)−0.0023 (5)

Geometric parameters (Å, °)

Cl1—C141.7528 (13)C6—C71.5173 (18)
N1—C61.4724 (15)C6—H6A0.9900
N1—C51.4744 (15)C6—H6B0.9900
N1—H2A0.909 (16)C7—C81.5112 (16)
N2—C111.3791 (15)C7—H7A0.9900
N2—C161.4529 (16)C7—H7B0.9900
N2—H1A0.837 (17)C8—C91.4004 (16)
C1—C21.3837 (18)C10—C151.3887 (16)
C1—C81.4003 (16)C10—C111.4190 (16)
C1—H10.9500C11—C121.4059 (15)
C2—C31.3910 (18)C12—C131.3925 (17)
C2—H20.9500C12—H120.9500
C3—C41.3898 (17)C13—C141.3789 (17)
C3—H30.9500C13—H130.9500
C4—C91.3966 (16)C14—C151.3906 (16)
C4—H40.9500C15—H150.9500
C5—C101.5136 (15)C16—H16A0.9800
C5—C91.5287 (15)C16—H16B0.9800
C5—H51.0000C16—H16C0.9800
C6—N1—C5109.58 (9)C8—C7—H7B109.3
C6—N1—H2A109.7 (10)C6—C7—H7B109.3
C5—N1—H2A107.7 (10)H7A—C7—H7B107.9
C11—N2—C16120.25 (10)C1—C8—C9118.98 (11)
C11—N2—H1A112.1 (11)C1—C8—C7120.05 (10)
C16—N2—H1A116.1 (11)C9—C8—C7120.97 (10)
C2—C1—C8121.22 (11)C4—C9—C8119.39 (10)
C2—C1—H1119.4C4—C9—C5119.93 (10)
C8—C1—H1119.4C8—C9—C5120.60 (10)
C1—C2—C3119.79 (11)C15—C10—C11119.86 (10)
C1—C2—H2120.1C15—C10—C5118.31 (10)
C3—C2—H2120.1C11—C10—C5121.83 (10)
C2—C3—C4119.57 (11)N2—C11—C12121.72 (10)
C2—C3—H3120.2N2—C11—C10119.99 (10)
C4—C3—H3120.2C12—C11—C10118.28 (10)
C3—C4—C9121.04 (11)C13—C12—C11121.27 (11)
C3—C4—H4119.5C13—C12—H12119.4
C9—C4—H4119.5C11—C12—H12119.4
N1—C5—C10111.69 (9)C14—C13—C12119.21 (11)
N1—C5—C9109.42 (9)C14—C13—H13120.4
C10—C5—C9113.04 (9)C12—C13—H13120.4
N1—C5—H5107.5C13—C14—C15121.10 (11)
C10—C5—H5107.5C13—C14—Cl1119.33 (9)
C9—C5—H5107.5C15—C14—Cl1119.56 (9)
N1—C6—C7108.48 (10)C10—C15—C14120.22 (11)
N1—C6—H6A110.0C10—C15—H15119.9
C7—C6—H6A110.0C14—C15—H15119.9
N1—C6—H6B110.0N2—C16—H16A109.5
C7—C6—H6B110.0N2—C16—H16B109.5
H6A—C6—H6B108.4H16A—C16—H16B109.5
C8—C7—C6111.76 (10)N2—C16—H16C109.5
C8—C7—H7A109.3H16A—C16—H16C109.5
C6—C7—H7A109.3H16B—C16—H16C109.5
C8—C1—C2—C3−0.41 (18)C10—C5—C9—C8149.59 (10)
C1—C2—C3—C4−0.20 (18)N1—C5—C10—C15−126.07 (11)
C2—C3—C4—C90.30 (18)C9—C5—C10—C15110.02 (11)
C6—N1—C5—C10176.42 (10)N1—C5—C10—C1154.53 (14)
C6—N1—C5—C9−57.66 (12)C9—C5—C10—C11−69.39 (13)
C5—N1—C6—C771.95 (13)C16—N2—C11—C1212.46 (16)
N1—C6—C7—C8−48.54 (14)C16—N2—C11—C10−168.94 (10)
C2—C1—C8—C90.93 (17)C15—C10—C11—N2178.75 (10)
C2—C1—C8—C7−178.41 (11)C5—C10—C11—N2−1.85 (16)
C6—C7—C8—C1−163.97 (11)C15—C10—C11—C12−2.59 (16)
C6—C7—C8—C916.70 (16)C5—C10—C11—C12176.81 (10)
C3—C4—C9—C80.22 (17)N2—C11—C12—C13179.92 (10)
C3—C4—C9—C5−176.50 (10)C10—C11—C12—C131.29 (16)
C1—C8—C9—C4−0.82 (16)C11—C12—C13—C140.99 (17)
C7—C8—C9—C4178.51 (11)C12—C13—C14—C15−2.02 (17)
C1—C8—C9—C5175.88 (10)C12—C13—C14—Cl1176.31 (9)
C7—C8—C9—C5−4.79 (16)C11—C10—C15—C141.64 (16)
N1—C5—C9—C4−158.88 (10)C5—C10—C15—C14−177.78 (10)
C10—C5—C9—C4−33.73 (14)C13—C14—C15—C100.71 (17)
N1—C5—C9—C824.44 (14)Cl1—C14—C15—C10−177.62 (8)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4,C8,C9 and C10–C15 rings respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1A···N10.837 (17)2.225 (17)2.9074 (15)138.8 (15)
C13—H13···Cg2i0.952.553.4307 (12)154
C15—H15···Cg1ii0.952.403.3495 (15)174
C16—H16B···Cg1iii0.982.893.6381 (19)134

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, −y+1/2, −z; (iii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2371).

References

  • Aitali, M., Allaoud, S., Karim, A., Roucoux, A. & Mortreux, A. (1995). Tetrahedron Asymmetry, 6, 369–370.
  • Aitali, M., Allaoud, S., Meliet, C., Mortreux, A. & Karim, A. (2000a). Tetrahedron Asymmetry, 11, 1367–1374.
  • Aitali, M., El Firdoussi, L., Karim, A., Barrero, A. F. & Quirós, M. (2000b). Acta Cryst. C56, 1088–1089. [PubMed]
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Morilla, M. E., Rodriguez, P., Belderrain, T. R., Graiff, C., Tiripiccho, A., Nicasio, M. C. & Perez, P. (2007). Inorg. Chem.46, 9405–9414. [PubMed]
  • Nakahara, H., Takeuchi, M., Naito, R., Kurihara, H., Nagano, N., Isomura, Y. & Mase, T. (1998). Acta Cryst. C54, 651–653.
  • Ohkuma, T., Ooka, H., Hashiguchi, S., Ikariya, T. & Noyori, R. (1995). J. Am. Chem. Soc.117, 2675–2676.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suna, E. (2003). Synthesis, 2, 251–254.
  • Vedejs, E., Kruger, A. W. & Suna, E. (1999). J. Org. Chem.64, 7863–7870.
  • Xie, J., Kong, W., Wang, X., Bai, W., Wang, L. & Zhou, Q. (2009). Front. Chem. China, 4, 299–306.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography