PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3126–o3127.
Published online 2010 November 13. doi:  10.1107/S1600536810045162
PMCID: PMC3011781

(E)-4-Hy­droxy-N′-(4-hy­droxy-3-meth­oxy­benzyl­idene)benzohydrazide

Abstract

In the title compound, C15H14N2O4, the N=C double bond has an E configuration. The two benzene rings make a dihedral angle of 28.59 (6)°. In the crystal, mol­ecules are linked into a three-dimensional network by inter­molecular N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds and stabilized by weak C—H(...)π inter­actions.

Related literature

For the pharmacological activity of Schiff bases derivatives, see: Zia-ur-Rehman et al. (2009 [triangle]); Parashar et al. (1988 [triangle]); Hadjoudis et al. (1987 [triangle]). For the biological activity of hydrazide derivatives, see: Waisser et al. (1990 [triangle]); Hall et al. (1993 [triangle]); Salhin et al. (2007 [triangle], 2009 [triangle]); Tameem et al. (2006 [triangle], 2007 [triangle], 2008 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3126-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O4
  • M r = 286.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3126-efi1.jpg
  • a = 10.9034 (3) Å
  • b = 8.5533 (2) Å
  • c = 14.7437 (4) Å
  • V = 1375.00 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.43 × 0.34 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.958, T max = 0.984
  • 8269 measured reflections
  • 2098 independent reflections
  • 2033 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.087
  • S = 1.03
  • 2098 reflections
  • 203 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045162/fj2361sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045162/fj2361Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MS, AS and RA acknowledge financial support by the Universiti Sains Malaysia (USM) under Science Fund Grant No. 1001/PKIMIA/811055. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Syntheses based on Schiff bases have become a major attraction in Chemistry because these products are well known for their pharmacological properties such as anti-tumor, anti-bacterial, anti-oxidant (Zia-ur-Rehman et al., 2009; Parashar et al., 1988) and photochromic activities (Hadjoudis et al., 1987). Many hydrazide derivatives known to have significant biological activities such as monoamine oxidase inhibitory activity, antifungal and tuberculostatic activity (Waisser et al., 1990; Hall et al., 1993). Continuing our interest on the synthesis and application of hydrazone and hydrazide derivatives (Salhin et al., 2007, 2009; Tameem et al., 2006, 2007, 2008), compound (I) (Fig. 1) was hereby synthesized based on Schiff bases by the condensation reaction of 4-hydroxybenzhydrazide and 4-hydroxy-3-methoxybenzaldehyde. The crystal structure is presented here.

The N═C double bond of (I) exist in an E-configuration. The two benzene rings make dihedral angle of 28.59 (6)°. The methoxy group is almost planar with its attached benzene ring [torsion angle 6.3 (2)°]. In the crystal packing, the molecules are linked into a three-dimensional network by intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds and stabilized by weak C—H···π interactions (Fig. 2, Table 1).

Experimental

A mixture of 4-hydroxybenzhydrazide (0.2 g, 1.31 mmol) and 4-hydroxy-3-methoxybenzaldehyde (0.2 g, 1.31 mmol) in 30 ml of methanol containing few drops of acetic acid was refluxed for about 5 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from ethanol. Yellow crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of solution.

Refinement

The O– and N-bound hydrogen atoms were located from difference Fourier map and refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 & 0.96 Å] and refined using a riding model [Uiso(H) = 1.2 & 1.5Ueq(C)]. A rotating-group model were applied for methyl groups. 1538 Friedel pairs were merged before final refinement. The absolute configuration is unknown.

Figures

Fig. 1.
The molecular structure of title compound with atom labels and 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of title compound viewed down b axis, showing the molecules are linked into a three-dimensional network.

Crystal data

C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.383 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5243 reflections
a = 10.9034 (3) Åθ = 2.8–30.1°
b = 8.5533 (2) ŵ = 0.10 mm1
c = 14.7437 (4) ÅT = 100 K
V = 1375.00 (6) Å3Plate, yellow
Z = 40.43 × 0.34 × 0.16 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2098 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 30.1°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −12→15
Tmin = 0.958, Tmax = 0.984k = −12→8
8269 measured reflectionsl = −18→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0687P)2 + 0.0626P] where P = (Fo2 + 2Fc2)/3
2098 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = −0.32 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.50848 (11)−0.29559 (13)−0.39327 (7)0.0176 (2)
O20.47208 (11)0.16057 (13)−0.05335 (7)0.0185 (2)
O30.72455 (10)0.71644 (12)0.21457 (7)0.0135 (2)
O40.84067 (11)0.96468 (12)0.16052 (7)0.0172 (2)
N10.59306 (12)0.30690 (14)−0.14694 (8)0.0134 (2)
N20.61084 (12)0.41786 (14)−0.07972 (8)0.0130 (2)
C10.51462 (13)0.09777 (17)−0.29247 (9)0.0122 (3)
H1A0.51630.2022−0.30990.015*
C20.51039 (13)−0.01823 (17)−0.35842 (9)0.0131 (3)
H2A0.50800.0083−0.41960.016*
C30.50984 (13)−0.17538 (18)−0.33189 (10)0.0133 (3)
C40.51091 (14)−0.21469 (17)−0.23966 (9)0.0149 (3)
H4A0.5106−0.3191−0.22210.018*
C50.51242 (13)−0.09687 (17)−0.17432 (9)0.0138 (3)
H5A0.5107−0.1230−0.11310.017*
C60.51643 (13)0.05963 (16)−0.20017 (9)0.0115 (3)
C70.52375 (13)0.17934 (17)−0.12730 (9)0.0127 (3)
C80.68511 (14)0.52860 (17)−0.10081 (9)0.0133 (3)
H8A0.71780.5333−0.15900.016*
C90.71871 (13)0.64765 (17)−0.03369 (9)0.0127 (3)
C100.78103 (14)0.78203 (17)−0.06151 (10)0.0148 (3)
H10A0.79620.7984−0.12280.018*
C110.82067 (14)0.89195 (17)0.00196 (10)0.0153 (3)
H11A0.86150.9815−0.01720.018*
C120.79915 (14)0.86768 (16)0.09385 (9)0.0130 (3)
C130.73610 (12)0.73180 (16)0.12227 (9)0.0114 (3)
C140.69530 (14)0.62378 (17)0.05952 (10)0.0127 (3)
H14A0.65260.53560.07860.015*
C150.67731 (14)0.57037 (17)0.24666 (10)0.0159 (3)
H15A0.67470.57130.31170.024*
H15B0.72950.48690.22650.024*
H15C0.59610.55490.22320.024*
H1N10.638 (2)0.311 (2)−0.1935 (17)0.018 (5)*
H1O10.501 (2)−0.252 (3)−0.442 (2)0.043 (8)*
H1O40.890 (2)1.034 (3)0.138 (2)0.033 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0328 (6)0.0102 (5)0.0099 (4)0.0016 (4)−0.0035 (4)−0.0002 (4)
O20.0279 (6)0.0167 (5)0.0109 (4)−0.0050 (4)0.0046 (4)−0.0017 (4)
O30.0187 (5)0.0131 (5)0.0088 (4)−0.0029 (4)0.0002 (4)0.0007 (3)
O40.0272 (6)0.0118 (5)0.0125 (4)−0.0068 (4)−0.0022 (4)−0.0013 (4)
N10.0181 (5)0.0127 (5)0.0093 (5)−0.0021 (4)0.0027 (4)−0.0035 (4)
N20.0181 (6)0.0111 (5)0.0099 (5)−0.0010 (4)−0.0003 (4)−0.0031 (4)
C10.0153 (6)0.0109 (6)0.0104 (5)−0.0005 (5)−0.0001 (5)0.0011 (5)
C20.0182 (7)0.0101 (6)0.0109 (6)−0.0001 (5)−0.0016 (5)0.0000 (4)
C30.0178 (6)0.0114 (6)0.0109 (6)0.0002 (5)−0.0012 (5)−0.0009 (5)
C40.0228 (7)0.0106 (6)0.0111 (6)−0.0009 (5)−0.0013 (5)0.0014 (5)
C50.0190 (7)0.0127 (7)0.0096 (5)−0.0011 (5)−0.0010 (5)0.0005 (5)
C60.0142 (6)0.0109 (6)0.0095 (5)−0.0012 (5)0.0001 (5)−0.0019 (5)
C70.0159 (6)0.0120 (6)0.0104 (6)0.0003 (5)−0.0003 (5)−0.0014 (5)
C80.0165 (7)0.0137 (6)0.0099 (5)0.0002 (5)0.0003 (5)−0.0017 (4)
C90.0152 (6)0.0127 (6)0.0101 (5)−0.0003 (5)−0.0007 (4)−0.0015 (4)
C100.0192 (7)0.0141 (6)0.0112 (5)−0.0019 (5)0.0010 (5)−0.0003 (5)
C110.0212 (7)0.0122 (6)0.0125 (6)−0.0026 (5)0.0003 (5)0.0006 (5)
C120.0174 (6)0.0104 (6)0.0111 (5)−0.0001 (5)−0.0008 (5)−0.0008 (5)
C130.0135 (6)0.0110 (6)0.0099 (6)0.0003 (5)−0.0003 (5)0.0008 (4)
C140.0142 (6)0.0117 (6)0.0122 (5)−0.0015 (5)0.0000 (5)0.0004 (5)
C150.0211 (7)0.0145 (6)0.0119 (6)−0.0026 (5)0.0010 (5)0.0030 (5)

Geometric parameters (Å, °)

O1—C31.3698 (17)C4—H4A0.9300
O1—H1O10.82 (3)C5—C61.393 (2)
O2—C71.2377 (18)C5—H5A0.9300
O3—C131.3729 (16)C6—C71.4862 (18)
O3—C151.4318 (17)C8—C91.4664 (18)
O4—C121.3637 (17)C8—H8A0.9300
O4—H1O40.86 (3)C9—C101.397 (2)
N1—C71.3584 (19)C9—C141.4127 (18)
N1—N21.3859 (15)C10—C111.395 (2)
N1—H1N10.84 (2)C10—H10A0.9300
N2—C81.2844 (19)C11—C121.3905 (19)
C1—C21.3900 (19)C11—H11A0.9300
C1—C61.3995 (19)C12—C131.4139 (19)
C1—H1A0.9300C13—C141.3811 (19)
C2—C31.400 (2)C14—H14A0.9300
C2—H2A0.9300C15—H15A0.9600
C3—C41.4008 (19)C15—H15B0.9600
C4—C51.3943 (19)C15—H15C0.9600
C3—O1—H1O1104 (2)N2—C8—C9120.42 (12)
C13—O3—C15116.36 (11)N2—C8—H8A119.8
C12—O4—H1O4110.3 (18)C9—C8—H8A119.8
C7—N1—N2118.39 (11)C10—C9—C14119.50 (12)
C7—N1—H1N1122.1 (14)C10—C9—C8119.66 (12)
N2—N1—H1N1118.1 (14)C14—C9—C8120.73 (12)
C8—N2—N1114.84 (11)C11—C10—C9120.55 (13)
C2—C1—C6120.95 (13)C11—C10—H10A119.7
C2—C1—H1A119.5C9—C10—H10A119.7
C6—C1—H1A119.5C12—C11—C10120.04 (14)
C1—C2—C3119.35 (13)C12—C11—H11A120.0
C1—C2—H2A120.3C10—C11—H11A120.0
C3—C2—H2A120.3O4—C12—C11123.74 (13)
O1—C3—C2122.42 (13)O4—C12—C13116.61 (12)
O1—C3—C4117.47 (13)C11—C12—C13119.57 (13)
C2—C3—C4120.11 (13)O3—C13—C14124.78 (12)
C5—C4—C3119.82 (14)O3—C13—C12114.65 (12)
C5—C4—H4A120.1C14—C13—C12120.53 (12)
C3—C4—H4A120.1C13—C14—C9119.79 (13)
C6—C5—C4120.40 (13)C13—C14—H14A120.1
C6—C5—H5A119.8C9—C14—H14A120.1
C4—C5—H5A119.8O3—C15—H15A109.5
C5—C6—C1119.33 (13)O3—C15—H15B109.5
C5—C6—C7117.78 (12)H15A—C15—H15B109.5
C1—C6—C7122.89 (13)O3—C15—H15C109.5
O2—C7—N1123.04 (13)H15A—C15—H15C109.5
O2—C7—C6121.53 (13)H15B—C15—H15C109.5
N1—C7—C6115.41 (12)
C7—N1—N2—C8174.70 (13)N2—C8—C9—C10−168.42 (14)
C6—C1—C2—C3−1.0 (2)N2—C8—C9—C1415.4 (2)
C1—C2—C3—O1−178.53 (13)C14—C9—C10—C110.3 (2)
C1—C2—C3—C41.3 (2)C8—C9—C10—C11−175.92 (14)
O1—C3—C4—C5179.95 (13)C9—C10—C11—C120.5 (2)
C2—C3—C4—C50.1 (2)C10—C11—C12—O4176.23 (14)
C3—C4—C5—C6−1.9 (2)C10—C11—C12—C13−0.5 (2)
C4—C5—C6—C12.2 (2)C15—O3—C13—C146.3 (2)
C4—C5—C6—C7−177.19 (13)C15—O3—C13—C12−171.28 (12)
C2—C1—C6—C5−0.8 (2)O4—C12—C13—O30.37 (18)
C2—C1—C6—C7178.59 (13)C11—C12—C13—O3177.34 (14)
N2—N1—C7—O22.8 (2)O4—C12—C13—C14−177.32 (13)
N2—N1—C7—C6−175.54 (12)C11—C12—C13—C14−0.3 (2)
C5—C6—C7—O2−34.2 (2)O3—C13—C14—C9−176.25 (13)
C1—C6—C7—O2146.44 (15)C12—C13—C14—C91.2 (2)
C5—C6—C7—N1144.17 (13)C10—C9—C14—C13−1.2 (2)
C1—C6—C7—N1−35.2 (2)C8—C9—C14—C13175.02 (13)
N1—N2—C8—C9−175.73 (12)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.84 (2)2.18 (2)2.9534 (16)153.0 (17)
N1—H1N1···O4i0.84 (2)2.53 (2)3.2252 (16)140.0 (17)
O1—H1O1···O2ii0.81 (3)1.84 (3)2.6361 (15)165 (2)
O4—H1O4···O1iii0.87 (2)1.89 (2)2.7457 (16)170 (3)
C2—H2A···O2ii0.932.453.1271 (17)129
C15—H15B···Cg1iv0.962.813.5620 (14)132

Symmetry codes: (i) −x+3/2, y−1/2, z−1/2; (ii) −x+1, −y, z−1/2; (iii) −x+3/2, y+3/2, z+1/2; (iv) x+3/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2361).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
  • Hall, L. H., Mohney, B. K. & Kier, L. B. (1993). Quant. Struct. Act. Relat.12, 44–48.
  • Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208.
  • Salhin, A., Abdul Razak, N. & Rahman, I. A. (2009). Acta Cryst. E65, o1221–o1222. [PMC free article] [PubMed]
  • Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tameem, A. A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679–o680. [PMC free article] [PubMed]
  • Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o5686–o5688.
  • Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o57–o58.
  • Waisser, K., Houngbedji, N., Odlerova, Z., Thiel, W. & Mayer, R. (1990). Pharmazie, 45, 141–142. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem.44, 1311–1316. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography