PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3074.
Published online 2010 November 6. doi:  10.1107/S1600536810044661
PMCID: PMC3011779

4-Eth­oxy­phenyl 4-[(meth­oxy­carbon­yl)­oxy]benzoate

Abstract

In the title compound, C17H16O6, the two benzene rings form a dihedral angle of 54.95 (10)°. Only weak inter­molecular inter­actions are present in the crystal structure, viz. C—H(...)O hydrogen bonds and C—H(...)π inter­actions involving one of the benzene rings.

Related literature

For general background to meth­oxy­carbon­yl(­oxy)benzoates, see Petrov (2002 [triangle]); Goodby et al. (1998 [triangle]); Castellano et al. (1971 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3074-scheme1.jpg

Experimental

Crystal data

  • C17H16O6
  • M r = 316.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3074-efi1.jpg
  • a = 11.7397 (5) Å
  • b = 16.9703 (6) Å
  • c = 7.9324 (3) Å
  • β = 96.949 (4)°
  • V = 1568.73 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.22 × 0.15 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009 [triangle]) T min = 0.982, T max = 0.988
  • 8839 measured reflections
  • 1797 independent reflections
  • 1092 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.085
  • S = 0.98
  • 1797 reflections
  • 211 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.11 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044661/fb2212sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044661/fb2212Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

supplementary crystallographic information

Comment

Liquid crystals play important role in technology. Among others, uniaxial calamitic (rod-like) nematic liquid crystals are active switching ingredients for the current LCD technology. A comparative study of physico-chemical and electro-optical properties of achiral calamitic liquid crystals which terminal, bridging and lateral alkoxy groups, with the corresponding alkyl group substituents has been carried out by Petrov (2002). It is well known that the terminal alkoxy substituent does not substantially affect the mesophase behaviour (Goodby et al., 1998). Methyl and propyl group derivatives with respect to the title compound, i. e. 4-methoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate and 4-propoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate, respectively, do not form liquid-crystal phase. On the other hand, the title compound with the ethyl group forms a stable nematic phase (Castellano et al., 1971). With this background, we have synthesized the title compound, 4-ethoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate, and herein we report its crystal structure.

The asymmetric unit of the 4-ethoxyphenyl 4-[(methoxycarbonyl)oxy] benzoate, C17H16O6, contains just one molecule (Fig. 1). The two aromatic rings are non-coplanar; the interplanar angle between the two benzene rings (C3\C4\···\C8) and (C10\C11\···C15) equals to 54.95 (10)°. There are only weak intermolecular interactions in the structure: C—H···O hydrogen bonds (Tab. 1) as well as one C—H···π-ring electron ring interaction (Tab. 1). The packing of the molecules in the title structure is depicted in Fig. 2.

Experimental

The 4-ethoxyphenyl 4-[(methoxycarbonyl)oxy]benzoate was synthesized according to the procedure described by Castellano et al. (1971). The crude white material was subjected to column chromatography using 60–120 mesh silica gel with ethyl acetate (1 ml) and hexane (99 ml) as an eluent. The retention factor equalled to 0.84. Single crystals, suitable for X-ray diffraction analysis, were obtained by recrystallization from pure hexane at room temperature. The yield was about 85%. M.p. 356 K.

Spectral data IR (KBr) cm-1: 2924 and 2852(CH2 aliphatic), 1759(OC═O ester), 1732(C═O ester), 1604 (aryl C═C), 1462(CH aryl). Elemental analysis: Theor.: C 64.55%, H 5.10%; Found: C 65.01%, H 4.72%.

Refinement

All the H atoms were observable in the difference electron density maps except for just one H from each triplet of the methyl H atoms. Nevertheless, the H atoms were situated into the idealized positions and constrained by the riding atom approximation. The constraints: Caryl—Haryl = 0.93, Cmethylene—Hmethylene = 0.97 and Cmethyl—Hmethyl = 0.96 Å. Uiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Hmethylene/aryl) = 1.2Ueq(Cmethylene/aryl). In the absence of significant anomalous scattering effects, 1654 Friedel pairs were merged.

Figures

Fig. 1.
The title molecule with the displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radii.
Fig. 2.
A view of the structure along the axis a.

Crystal data

C17H16O6F(000) = 664
Mr = 316.30Dx = 1.339 Mg m3
Monoclinic, CcMelting point: 356 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 11.7397 (5) ÅCell parameters from 1797 reflections
b = 16.9703 (6) Åθ = 2.4–27.5°
c = 7.9324 (3) ŵ = 0.10 mm1
β = 96.949 (4)°T = 293 K
V = 1568.73 (11) Å3Plate, colourless
Z = 40.22 × 0.15 × 0.12 mm

Data collection

Oxford Diffraction Xcalibur diffractometer1797 independent reflections
Radiation source: Enhance (Mo) X-ray Source1092 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 16.0839 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = −14→15
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009)k = −21→21
Tmin = 0.982, Tmax = 0.988l = −10→10
8839 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085w = 1/[σ2(Fo2) + (0.0418P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1797 reflectionsΔρmax = 0.13 e Å3
211 parametersΔρmin = −0.11 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
62 constraintsExtinction coefficient: 0.0052 (7)
Primary atom site location: structure-invariant direct methods

Special details

Experimental. CrysAlisPro, Oxford Diffraction (2010), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R- factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.75904 (19)0.40401 (15)0.0153 (3)0.0827 (7)
O20.5908 (2)0.34329 (14)0.0242 (3)0.0794 (7)
O30.68466 (18)0.40619 (14)0.2481 (3)0.0749 (6)
O40.3150 (2)0.27835 (12)0.7091 (3)0.0812 (7)
O50.3405 (2)0.40346 (11)0.7901 (3)0.0681 (6)
O60.03480 (19)0.39014 (13)1.2645 (3)0.0725 (6)
C10.7605 (3)0.3799 (3)−0.1598 (5)0.0961 (12)
H1A0.80870.4149−0.21450.144*
H1B0.68390.3815−0.21800.144*
H1C0.78980.3271−0.16290.144*
C20.6705 (3)0.37896 (19)0.0872 (4)0.0630 (8)
C30.5995 (3)0.3876 (2)0.3513 (3)0.0604 (8)
C40.5405 (3)0.44911 (18)0.4107 (4)0.0610 (8)
H40.55220.50020.37430.073*
C50.4636 (2)0.43453 (17)0.5251 (4)0.0587 (8)
H50.42530.47630.56930.070*
C60.4428 (2)0.35787 (17)0.5747 (3)0.0523 (7)
C70.5019 (3)0.29643 (17)0.5101 (4)0.0610 (8)
H70.48770.24490.54150.073*
C80.5816 (3)0.31082 (18)0.3996 (4)0.0653 (8)
H80.62240.26960.35830.078*
C90.3606 (2)0.34004 (17)0.6952 (4)0.0549 (7)
C100.2640 (3)0.39527 (16)0.9136 (4)0.0577 (8)
C110.1571 (3)0.42874 (17)0.8805 (4)0.0639 (8)
H110.13540.45340.77690.077*
C120.0830 (3)0.42581 (17)0.9999 (4)0.0620 (8)
H120.01050.44820.97740.074*
C130.1157 (3)0.38941 (16)1.1553 (4)0.0530 (7)
C140.2230 (3)0.35663 (17)1.1868 (4)0.0635 (8)
H140.24550.33231.29050.076*
C150.2983 (3)0.35972 (17)1.0643 (4)0.0628 (8)
H150.37120.33771.08550.075*
C160.0587 (3)0.3503 (2)1.4190 (5)0.0816 (10)
H16A0.12380.37441.48680.098*
H16B0.07730.29571.39890.098*
C17−0.0464 (3)0.3550 (2)1.5115 (5)0.0886 (12)
H17A−0.03100.32941.61980.133*
H17B−0.10970.32941.44540.133*
H17C−0.06540.40931.52810.133*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0645 (15)0.1165 (18)0.0703 (16)−0.0045 (12)0.0212 (12)−0.0007 (14)
O20.0704 (15)0.1012 (17)0.0680 (14)−0.0119 (13)0.0132 (12)−0.0162 (13)
O30.0674 (15)0.0997 (16)0.0590 (14)−0.0168 (11)0.0135 (11)−0.0106 (12)
O40.1030 (17)0.0546 (13)0.0918 (16)−0.0184 (11)0.0355 (13)−0.0090 (11)
O50.0850 (15)0.0569 (12)0.0676 (14)−0.0092 (11)0.0297 (12)−0.0046 (11)
O60.0739 (15)0.0778 (14)0.0674 (15)−0.0020 (11)0.0156 (12)0.0002 (12)
C10.085 (3)0.138 (3)0.071 (2)0.009 (2)0.033 (2)−0.009 (2)
C20.053 (2)0.075 (2)0.062 (2)0.0094 (17)0.0106 (17)−0.0008 (18)
C30.058 (2)0.075 (2)0.0478 (19)−0.0021 (15)0.0066 (15)0.0024 (16)
C40.079 (2)0.0527 (17)0.0517 (17)−0.0014 (15)0.0077 (16)0.0049 (14)
C50.0702 (19)0.0516 (18)0.0547 (19)0.0049 (14)0.0093 (16)−0.0020 (14)
C60.0586 (18)0.0494 (18)0.0479 (18)0.0016 (13)0.0025 (15)0.0032 (13)
C70.0687 (19)0.0477 (17)0.067 (2)0.0072 (14)0.0084 (16)0.0037 (14)
C80.073 (2)0.064 (2)0.0593 (18)0.0156 (15)0.0096 (16)−0.0022 (15)
C90.0625 (18)0.0454 (17)0.0558 (18)0.0004 (14)0.0033 (15)−0.0005 (14)
C100.066 (2)0.0492 (17)0.061 (2)−0.0088 (14)0.0169 (16)−0.0036 (14)
C110.079 (2)0.0572 (17)0.0544 (19)0.0038 (16)0.0036 (17)0.0043 (13)
C120.0573 (18)0.0614 (17)0.067 (2)0.0067 (14)0.0057 (16)−0.0013 (15)
C130.0556 (18)0.0513 (17)0.0528 (19)−0.0075 (13)0.0094 (15)−0.0069 (14)
C140.071 (2)0.068 (2)0.0498 (18)−0.0017 (16)0.0004 (16)0.0023 (15)
C150.0602 (18)0.0637 (18)0.064 (2)0.0005 (14)0.0072 (16)0.0007 (16)
C160.093 (3)0.087 (2)0.066 (2)−0.003 (2)0.016 (2)0.000 (2)
C170.090 (3)0.110 (3)0.071 (2)−0.017 (2)0.031 (2)−0.003 (2)

Geometric parameters (Å, °)

O1—C21.315 (4)C6—C91.470 (4)
O1—C11.450 (4)C7—C81.378 (4)
O2—C21.174 (4)C7—H70.9300
O3—C21.349 (4)C8—H80.9300
O3—C31.403 (3)C10—C151.356 (4)
O4—C91.187 (3)C10—C111.373 (4)
O5—C91.350 (3)C11—C121.362 (4)
O5—C101.414 (3)C11—H110.9300
O6—C131.361 (3)C12—C131.390 (4)
O6—C161.398 (4)C12—H120.9300
C1—H1A0.9600C13—C141.373 (4)
C1—H1B0.9600C14—C151.391 (4)
C1—H1C0.9600C14—H140.9300
C3—C41.368 (4)C15—H150.9300
C3—C81.381 (4)C16—C171.512 (5)
C4—C51.378 (4)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C5—C61.389 (4)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C71.385 (4)C17—H17C0.9600
C2—O1—C1115.2 (3)O4—C9—C6125.5 (3)
C2—O3—C3117.4 (2)O5—C9—C6111.8 (2)
C9—O5—C10118.4 (2)C15—C10—C11121.3 (3)
C13—O6—C16118.2 (3)C15—C10—O5120.6 (3)
O1—C1—H1A109.5C11—C10—O5118.0 (3)
O1—C1—H1B109.5C12—C11—C10119.8 (3)
H1A—C1—H1B109.5C12—C11—H11120.1
O1—C1—H1C109.5C10—C11—H11120.1
H1A—C1—H1C109.5C11—C12—C13120.1 (3)
H1B—C1—H1C109.5C11—C12—H12119.9
O2—C2—O1127.8 (3)C13—C12—H12119.9
O2—C2—O3125.4 (3)O6—C13—C14125.7 (3)
O1—C2—O3106.7 (3)O6—C13—C12114.9 (3)
C4—C3—C8121.6 (3)C14—C13—C12119.4 (3)
C4—C3—O3117.1 (3)C13—C14—C15120.3 (3)
C8—C3—O3121.2 (3)C13—C14—H14119.9
C3—C4—C5119.3 (3)C15—C14—H14119.9
C3—C4—H4120.4C10—C15—C14119.1 (3)
C5—C4—H4120.4C10—C15—H15120.5
C4—C5—C6120.4 (3)C14—C15—H15120.5
C4—C5—H5119.8O6—C16—C17108.1 (3)
C6—C5—H5119.8O6—C16—H16A110.1
C7—C6—C5119.2 (3)C17—C16—H16A110.1
C7—C6—C9118.9 (3)O6—C16—H16B110.1
C5—C6—C9121.9 (2)C17—C16—H16B110.1
C8—C7—C6120.7 (3)H16A—C16—H16B108.4
C8—C7—H7119.6C16—C17—H17A109.5
C6—C7—H7119.6C16—C17—H17B109.5
C7—C8—C3118.8 (3)H17A—C17—H17B109.5
C7—C8—H8120.6C16—C17—H17C109.5
C3—C8—H8120.6H17A—C17—H17C109.5
O4—C9—O5122.7 (3)H17B—C17—H17C109.5
C1—O1—C2—O2−4.3 (5)C5—C6—C9—O4158.2 (3)
C1—O1—C2—O3179.3 (3)C7—C6—C9—O5158.5 (3)
C3—O3—C2—O22.9 (5)C5—C6—C9—O5−20.9 (3)
C3—O3—C2—O1179.4 (3)C9—O5—C10—C1577.9 (3)
C2—O3—C3—C4−117.8 (3)C9—O5—C10—C11−106.2 (3)
C2—O3—C3—C866.3 (4)C15—C10—C11—C12−0.7 (4)
C8—C3—C4—C51.8 (4)O5—C10—C11—C12−176.5 (2)
O3—C3—C4—C5−174.0 (3)C10—C11—C12—C130.4 (4)
C3—C4—C5—C6−2.4 (4)C16—O6—C13—C14−4.1 (4)
C4—C5—C6—C71.1 (4)C16—O6—C13—C12176.0 (3)
C4—C5—C6—C9−179.5 (3)C11—C12—C13—O6179.9 (2)
C5—C6—C7—C80.8 (4)C11—C12—C13—C140.0 (4)
C9—C6—C7—C8−178.6 (3)O6—C13—C14—C15−180.0 (2)
C6—C7—C8—C3−1.5 (5)C12—C13—C14—C15−0.1 (4)
C4—C3—C8—C70.1 (4)C11—C10—C15—C140.6 (4)
O3—C3—C8—C7175.8 (3)O5—C10—C15—C14176.3 (2)
C10—O5—C9—O41.5 (4)C13—C14—C15—C10−0.2 (4)
C10—O5—C9—C6−179.3 (2)C13—O6—C16—C17−176.2 (3)
C7—C6—C9—O4−22.4 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring C2,C4–C8.
D—H···AD—HH···AD···AD—H···A
C16—H16B···O2i0.972.563.399 (4)145
C1—H1B···Cg1ii0.962.993.853 (4)151

Symmetry codes: (i) x−1/2, −y+1/2, z+3/2; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2212).

References

  • Castellano, J. A., McCaffrey, M. T. & Goldmacher, J. E. (1971). Mol. Cryst. Liq. Cryst.2, 345–366.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Goodby, J. W., Gray, G. W. & Spiess, H. (1998). Handbook of Liquid Crystals: Fundamentals, Vol. 1, pp. 133–187. Weinheim: Wiley-VCH.
  • Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  • Petrov, V. F. (2002). Liq. Cryst.29, 805–835.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography