PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1667.
Published online 2010 November 27. doi:  10.1107/S1600536810048464
PMCID: PMC3011773

Tetra­aqua­bis­[5-(3-pyrid­yl)tetra­zolido-κN 5]zinc(II) tetra­hydrate

Abstract

The title compound, [Zn(C6H4N5)2(H2O)4]·4H2O, was synthesized by the hydro­thermal reaction of Zn(CH3COO)2·2H2O with 3-(2H-tetra­zol-5-yl)pyridine. The ZnII ion is located on an inversion center and is coordinated by two pyridine N atoms from two 5-(3-pyrid­yl)tetra­zolide ligands and four coordinated water mol­ecules in a slightly distorted octa­hedral geometry. The dihedral angle between the pyridine and tetra­zole rings is 9.920 (7)°. In the crystal, mol­ecules are linked into a three-dimensional network by inter­molecular O—H(...)O and O—H(...)N hydrogen bonds involving the tetra­zole group N atoms, the aqua ligands and solvent water mol­ecules.

Related literature

For background to 5-(3-pyrid­yl)tetra­zolate complexes, see: Xiong et al. (2002 [triangle]); Wang et al. (2005 [triangle]). For a related structure, see: Zhang et al. (2006 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1667-scheme1.jpg

Experimental

Crystal data

  • [Zn(C6H4N5)2(H2O)4]·4H2O
  • M r = 501.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1667-efi1.jpg
  • a = 8.0930 (13) Å
  • b = 8.5836 (14) Å
  • c = 8.7082 (14) Å
  • α = 85.942 (2)°
  • β = 65.075 (2)°
  • γ = 72.369 (2)°
  • V = 521.69 (15) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.24 mm−1
  • T = 296 K
  • 0.35 × 0.23 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.717, T max = 0.800
  • 2640 measured reflections
  • 1814 independent reflections
  • 1788 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.071
  • S = 1.00
  • 1814 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2007) [triangle]; cell refinement: SAINT (Bruker, 2007) [triangle]; data reduction: SAINT [triangle]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048464/lh5162sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048464/lh5162Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Important Project of Hubei Provincial Education Office (Q20101203).

supplementary crystallographic information

Comment

Nowadays much attention is focused on the design and synthesis of functional materials based on metal-organic coordination polymers due to their intriguing topological structures and tremendous range of potential applications. Tetrazole compounds are a class of excellent ligands for construction of novel metal-organic frameworks and for the medical applications, because of their various coordination modes (Xiong et al., 2002; Wang et al., 2005; Zhang et al., 2006). We report herein the crystal structure of the title compound. The asymmetric unit contains one half of a ZnII ion, one 5-(3-pyridyl)tetrazolide (3-ptz) ligand, two coordinated water and two solvent water molecules. The ZnII ion is in a slightly distorted octahedral geometry surrounded by two N atoms from two 5-(3-pyridyl)tetrazolide ligands and four coordinated water molecules (Fig. 1). The dihedral angle between the pyridine and tetrazole rings is 9.920 (7)°. In the crystal, molecules are linked into a three-dimensional network by intermolecular O—H···O, O—H···N hydrogen bonds involving the tetrazole group N atoms, the aqua ligands and solvent water molecules (Fig. 2). The hydrogen bond network contains R24(10), R44(10) and R44(22) rings (Bernstein et al., 1995).

Experimental

A mixture of 3-(2H-tetrazol-5-yl)pyridine (0.2 mmol,0.0294 g), Zn(CH3COO)2.2H2O (0.1 mmol, 0.0219 g), methanol (5 ml) and distilled water (10 ml) were sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for three days, and then cooled slowly to 298 K at which time colorless crystals were obtained.

Refinement

All the H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.85 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
View of the title complex with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: (A) 2 - x, 1 - y, -z.].
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[Zn(C6H4N5)2(H2O)4]·4H2OZ = 1
Mr = 501.78F(000) = 260
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0930 (13) ÅCell parameters from 2640 reflections
b = 8.5836 (14) Åθ = 2.5–25.0°
c = 8.7082 (14) ŵ = 1.24 mm1
α = 85.942 (2)°T = 296 K
β = 65.075 (2)°Prism, colorless
γ = 72.369 (2)°0.35 × 0.23 × 0.18 mm
V = 521.69 (15) Å3

Data collection

Bruker SMART CCD diffractometer1814 independent reflections
Radiation source: fine-focus sealed tube1788 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→9
Tmin = 0.717, Tmax = 0.800k = −10→9
2640 measured reflectionsl = −9→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.038P)2 + 0.3832P] where P = (Fo2 + 2Fc2)/3
1814 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn11.00000.50000.00000.02415 (12)
N10.9006 (2)0.5872 (2)0.2605 (2)0.0253 (3)
N21.2471 (2)0.8188 (2)0.3456 (2)0.0295 (4)
N31.3341 (2)0.8789 (2)0.4176 (2)0.0323 (4)
N41.2417 (3)0.8856 (2)0.5824 (2)0.0316 (4)
N51.0910 (2)0.8308 (2)0.6230 (2)0.0277 (4)
O11.2917 (2)0.49525 (18)−0.06216 (18)0.0332 (3)
H1A1.36350.4132−0.03660.050*
H1B1.31820.5786−0.04380.050*
O20.9302 (2)0.74166 (18)−0.05239 (19)0.0431 (4)
H2A0.97490.7802−0.14880.052*
H2B0.84790.81830.02140.065*
O30.5798 (2)0.25397 (19)1.00465 (19)0.0359 (3)
H3B0.59380.17031.06160.054*
H3A0.63170.21650.90190.054*
O40.6545 (2)−0.01658 (18)0.19326 (18)0.0337 (3)
H4A0.69300.02110.25540.051*
H4B0.5598−0.04800.25930.051*
C11.0065 (3)0.6594 (2)0.2951 (2)0.0280 (4)
H11.11700.66960.20550.034*
C20.9644 (3)0.7203 (2)0.4543 (2)0.0233 (4)
C30.7977 (3)0.7081 (3)0.5869 (2)0.0284 (4)
H30.76300.74740.69650.034*
C40.6849 (3)0.6368 (3)0.5532 (3)0.0332 (5)
H40.57160.62860.64010.040*
C50.7393 (3)0.5773 (2)0.3904 (2)0.0283 (4)
H50.66160.52870.37000.034*
C61.0978 (3)0.7907 (2)0.4753 (2)0.0234 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02550 (18)0.02944 (19)0.01939 (18)−0.01032 (13)−0.00976 (13)0.00137 (12)
N10.0254 (8)0.0299 (8)0.0232 (8)−0.0103 (7)−0.0113 (7)0.0027 (6)
N20.0297 (9)0.0378 (9)0.0237 (8)−0.0157 (7)−0.0099 (7)0.0023 (7)
N30.0321 (9)0.0394 (10)0.0304 (9)−0.0173 (8)−0.0134 (7)0.0026 (7)
N40.0353 (9)0.0353 (9)0.0318 (9)−0.0161 (8)−0.0176 (8)0.0031 (7)
N50.0331 (9)0.0313 (9)0.0231 (8)−0.0147 (7)−0.0127 (7)0.0033 (7)
O10.0273 (7)0.0398 (8)0.0351 (8)−0.0100 (6)−0.0148 (6)−0.0026 (6)
O20.0585 (10)0.0300 (8)0.0218 (7)−0.0056 (7)−0.0051 (7)0.0046 (6)
O30.0379 (8)0.0388 (8)0.0276 (8)−0.0126 (7)−0.0099 (6)0.0030 (6)
O40.0364 (8)0.0421 (8)0.0248 (7)−0.0187 (7)−0.0099 (6)0.0004 (6)
C10.0277 (10)0.0370 (11)0.0201 (9)−0.0155 (8)−0.0067 (8)0.0013 (8)
C20.0246 (9)0.0236 (9)0.0229 (9)−0.0071 (7)−0.0115 (7)0.0034 (7)
C30.0274 (10)0.0355 (10)0.0202 (9)−0.0096 (8)−0.0076 (8)−0.0004 (8)
C40.0254 (10)0.0461 (12)0.0258 (10)−0.0154 (9)−0.0055 (8)0.0021 (9)
C50.0253 (10)0.0357 (11)0.0275 (10)−0.0128 (8)−0.0123 (8)0.0033 (8)
C60.0260 (9)0.0231 (9)0.0227 (9)−0.0086 (7)−0.0111 (7)0.0037 (7)

Geometric parameters (Å, °)

Zn1—O2i2.0503 (15)O2—H2A0.8498
Zn1—O22.0503 (15)O2—H2B0.8498
Zn1—N1i2.1662 (16)O3—H3B0.8499
Zn1—N12.1662 (16)O3—H3A0.8499
Zn1—O1i2.1760 (14)O4—H4A0.8498
Zn1—O12.1760 (14)O4—H4B0.8498
N1—C11.333 (3)C1—C21.381 (3)
N1—C51.341 (2)C1—H10.9300
N2—C61.335 (2)C2—C31.385 (3)
N2—N31.339 (2)C2—C61.463 (3)
N3—N41.305 (3)C3—C41.373 (3)
N4—N51.339 (2)C3—H30.9300
N5—C61.329 (3)C4—C51.380 (3)
O1—H1A0.8499C4—H40.9300
O1—H1B0.8500C5—H50.9300
O2i—Zn1—O2180.0H1A—O1—H1B106.1
O2i—Zn1—N1i86.61 (6)Zn1—O2—H2A126.3
O2—Zn1—N1i93.39 (6)Zn1—O2—H2B123.6
O2i—Zn1—N193.39 (6)H2A—O2—H2B110.0
O2—Zn1—N186.61 (6)H3B—O3—H3A105.1
N1i—Zn1—N1180.0H4A—O4—H4B107.1
O2i—Zn1—O1i91.09 (7)N1—C1—C2124.80 (17)
O2—Zn1—O1i88.91 (7)N1—C1—H1117.6
N1i—Zn1—O1i92.52 (6)C2—C1—H1117.6
N1—Zn1—O1i87.48 (6)C1—C2—C3117.46 (17)
O2i—Zn1—O188.91 (7)C1—C2—C6119.00 (17)
O2—Zn1—O191.09 (7)C3—C2—C6123.53 (17)
N1i—Zn1—O187.48 (6)C4—C3—C2118.58 (18)
N1—Zn1—O192.52 (6)C4—C3—H3120.7
O1i—Zn1—O1180.00 (8)C2—C3—H3120.7
C1—N1—C5116.84 (17)C3—C4—C5120.07 (18)
C1—N1—Zn1117.54 (12)C3—C4—H4120.0
C5—N1—Zn1125.61 (13)C5—C4—H4120.0
C6—N2—N3104.97 (16)N1—C5—C4122.24 (18)
N4—N3—N2109.42 (16)N1—C5—H5118.9
N3—N4—N5109.47 (16)C4—C5—H5118.9
C6—N5—N4105.07 (15)N5—C6—N2111.07 (16)
Zn1—O1—H1A118.6N5—C6—C2125.41 (17)
Zn1—O1—H1B122.1N2—C6—C2123.50 (17)
O2i—Zn1—N1—C1109.54 (15)N1—C1—C2—C6177.49 (18)
O2—Zn1—N1—C1−70.46 (15)C1—C2—C3—C40.0 (3)
N1i—Zn1—N1—C1−69 (100)C6—C2—C3—C4−178.70 (19)
O1i—Zn1—N1—C1−159.52 (15)C2—C3—C4—C50.8 (3)
O1—Zn1—N1—C120.48 (15)C1—N1—C5—C4−0.7 (3)
O2i—Zn1—N1—C5−71.60 (16)Zn1—N1—C5—C4−179.59 (15)
O2—Zn1—N1—C5108.40 (16)C3—C4—C5—N1−0.5 (3)
N1i—Zn1—N1—C5110 (100)N4—N5—C6—N20.0 (2)
O1i—Zn1—N1—C519.35 (16)N4—N5—C6—C2178.35 (17)
O1—Zn1—N1—C5−160.65 (16)N3—N2—C6—N5−0.2 (2)
C6—N2—N3—N40.2 (2)N3—N2—C6—C2−178.53 (17)
N2—N3—N4—N5−0.2 (2)C1—C2—C6—N5−169.29 (19)
N3—N4—N5—C60.1 (2)C3—C2—C6—N59.4 (3)
C5—N1—C1—C21.6 (3)C1—C2—C6—N28.8 (3)
Zn1—N1—C1—C2−179.40 (15)C3—C2—C6—N2−172.44 (19)
N1—C1—C2—C3−1.3 (3)

Symmetry codes: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.852.022.848 (2)165
O1—H1B···O3iii0.851.972.813 (2)171
O2—H2A···N5iv0.851.892.733 (2)171
O2—H2B···O4v0.851.922.768 (2)177
O3—H3B···O4vi0.851.972.811 (2)173
O3—H3A···N2iii0.851.962.792 (2)167
O4—H4A···N4iii0.851.992.838 (2)175
O4—H4B···N3vii0.852.022.870 (2)180

Symmetry codes: (ii) x+1, y, z−1; (iii) −x+2, −y+1, −z+1; (iv) x, y, z−1; (v) x, y+1, z; (vi) x, y, z+1; (vii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5162).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [PubMed]
  • Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. Engl.41, 3800–3803. [PubMed]
  • Zhang, C., Ai, H.-Q. & Ng, S. W. (2006). Acta Cryst. E62, m2908–m2909.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography