PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1565.
Published online 2010 November 13. doi:  10.1107/S1600536810046131
PMCID: PMC3011772

Tetra-μ-acetato-κ4 O:O′;κ3 O,O′:O3 O:O,O′-bis­[(acetato-κ2 O,O′)(1,10-phenanthroline-κ2 N,N′)europium(III)]

Abstract

In the title centrosymmetric dinuclear complex, [Eu2(CH3CO2)6(C12H8N2)2], the EuIII atom is nine-coordinated by two N atoms from a 1,10-phenanthroline ligand and seven O atoms from five acetate ligands (two bidentate, three monodentate). The crystal structure is stabilized by π–π stacking inter­actions between the pyridine and benzene rings of adjacent mol­ecules, with a centroid–centroid distance of 3.829 (2) Å.

Related literature

For general background to lanthanide complexes based on nitro­gen-containing organic ligands, see: Lima et al. (2009 [triangle]); Prasad & Rajasekharan (2009 [triangle]); Xiang et al. (2009 [triangle]); Yang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1565-scheme1.jpg

Experimental

Crystal data

  • [Eu2(C2H3O2)6(C12H8N2)2]
  • M r = 1018.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1565-efi1.jpg
  • a = 9.7249 (19) Å
  • b = 23.670 (5) Å
  • c = 8.2984 (17) Å
  • β = 90.32 (3)°
  • V = 1910.2 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.32 mm−1
  • T = 293 K
  • 0.20 × 0.10 × 0.08 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.559, T max = 0.789
  • 18210 measured reflections
  • 4324 independent reflections
  • 2668 reflections with I > 2σ(I)
  • R int = 0.125

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.101
  • S = 0.99
  • 4324 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 1.02 e Å−3
  • Δρmin = −0.90 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046131/hy2358sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046131/hy2358Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21071035, 20771030 and 20971031), the Science Innovation Special Foundation of Harbin City in China (2010RFQXG017) and the Research Fund for the Doctoral Program of Higher Education (20070213005).

supplementary crystallographic information

Comment

Luminescent coordination compounds of lanthanide based on nitrogen-containing organic ligands have attracted intensive attention due to their potential applications in areas of sensor technologies and electro-luminescent devices (Xiang et al., 2009; Yang et al., 2009). In order to explore potential luminescent complexes of this type, a series of the lanthanide metal complexes with nitrogen-containing organic ligands have been studied (Lima et al., 2009; Prasad & Rajasekharan, 2009). Here, we report the crystal structure of a dinuclear europium(III) complex with 1,10-phenanthroline ligand.

The title dinuclear complex consists of two EuIII ions, two 1,10-phenanthroline ligands and six acetate anions (Fig. 1). The Eu atom is nine-coordinated by two N atoms from a phenanthroline ligand and seven O atoms from five acetate anions (Table 1).

There are three different linking fashions between acetates and Eu atoms. Each Eu atom is bonded to two O atoms from a chelating acetate (O2, O3), three O atoms from two chelating and bridging acetates (O1, O6, O6i) and two O atoms from two bridging acetates [O4, O5i; symmetry code: (i) -x, -y, 2-z]. Two nine-coordinated Eu atoms are linked by edge-sharing to form a dinuclear structure. It is noteworthy that π–π stacking interactions between adjacent phenanthroline ligands play a significant role in stabilizing the structure, with a centroid–centroid distance of 3.829 (2) Å (Fig. 2).

Experimental

The title complex was prepared under mild conditions by allowing Eu(NO3)3 (0.043 g, 0.1 mmol) and 1,10-phenanthroline (0.059 g, 0.3 mmol) to react in a mixed solution of N,N-dimethylformamide (10 ml) and acetic acid (2.0 ml) at 338 K for 4 d. Colorless block crystals were obtained in a 47% yield based on Eu atom.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found 0.92 Å from Eu1 and the deepest hole 0.95 Å from Eu1.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (A) -x, -y, 2-z.]
Fig. 2.
Packing diagram of the title compound along the a axis.

Crystal data

[Eu2(C2H3O2)6(C12H8N2)2]F(000) = 1000
Mr = 1018.59Dx = 1.771 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3465 reflections
a = 9.7249 (19) Åθ = 3.3–27.5°
b = 23.670 (5) ŵ = 3.32 mm1
c = 8.2984 (17) ÅT = 293 K
β = 90.32 (3)°Block, colorless
V = 1910.2 (7) Å30.20 × 0.10 × 0.08 mm
Z = 2

Data collection

Bruker APEX CCD diffractometer4324 independent reflections
Radiation source: fine-focus sealed tube2668 reflections with I > 2σ(I)
graphiteRint = 0.125
[var phi] and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.559, Tmax = 0.789k = −30→30
18210 measured reflectionsl = −9→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0299P)2] where P = (Fo2 + 2Fc2)/3
4324 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = −0.90 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Eu10.13542 (4)0.060026 (13)0.95103 (4)0.03528 (13)
O10.0766 (5)0.0993 (2)1.2170 (5)0.0495 (14)
O20.1771 (6)0.0886 (2)0.6727 (6)0.0517 (14)
O30.3281 (5)0.0295 (2)0.7710 (6)0.0507 (14)
O4−0.0904 (5)0.08694 (18)0.8702 (6)0.0472 (13)
O5−0.2383 (5)0.01441 (19)0.8964 (6)0.0458 (13)
O60.0405 (5)−0.02279 (18)0.8341 (5)0.0423 (12)
N10.1482 (7)0.1713 (2)0.9431 (8)0.0511 (16)
N20.3590 (6)0.1076 (2)1.0623 (7)0.0408 (14)
C10.4668 (7)0.0771 (3)1.1138 (8)0.0431 (19)
H1A0.46220.03801.10350.052*
C20.5841 (8)0.1002 (3)1.1811 (9)0.053 (2)
H2A0.65660.07721.21330.063*
C30.5921 (9)0.1571 (3)1.1996 (10)0.066 (3)
H3A0.67020.17331.24540.079*
C40.4818 (8)0.1915 (3)1.1492 (10)0.055 (2)
C50.4823 (11)0.2517 (4)1.1624 (12)0.084 (3)
H5A0.55650.26941.21240.101*
C60.3792 (11)0.2832 (4)1.1049 (12)0.086 (3)
H6A0.38300.32221.11620.103*
C70.2628 (9)0.2580 (3)1.0260 (10)0.064 (2)
C80.1551 (10)0.2892 (3)0.9555 (11)0.075 (3)
H8A0.15690.32850.95960.090*
C90.0499 (11)0.2627 (3)0.8825 (12)0.083 (3)
H9A−0.02140.28310.83520.100*
C100.0503 (10)0.2035 (3)0.8793 (10)0.067 (3)
H10A−0.02330.18550.82890.081*
C110.2555 (8)0.1984 (3)1.0144 (9)0.049 (2)
C120.3674 (8)0.1641 (3)1.0785 (8)0.0447 (19)
C13−0.0119 (7)0.0640 (3)1.2593 (8)0.0391 (16)
C14−0.0864 (8)0.0707 (3)1.4136 (8)0.055 (2)
H14A−0.10520.03421.45850.083*
H14B−0.17140.09031.39440.083*
H14C−0.03090.09211.48770.083*
C150.2801 (8)0.0583 (3)0.6569 (9)0.0431 (17)
C160.3468 (9)0.0548 (4)0.4946 (9)0.063 (2)
H16A0.43430.07360.49820.095*
H16B0.28890.07270.41560.095*
H16C0.36000.01590.46610.095*
C17−0.2064 (8)0.0637 (3)0.8529 (8)0.0422 (17)
C18−0.3164 (8)0.0977 (3)0.7682 (9)0.056 (2)
H18A−0.39950.07590.76170.084*
H18B−0.28620.10710.66150.084*
H18C−0.33340.13180.82750.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Eu10.0401 (2)0.02511 (17)0.0406 (2)−0.00140 (19)−0.00452 (14)−0.00032 (19)
O10.061 (4)0.044 (3)0.044 (3)−0.015 (3)0.004 (3)−0.011 (2)
O20.061 (4)0.045 (3)0.049 (3)0.014 (3)−0.002 (3)0.005 (2)
O30.046 (3)0.056 (3)0.049 (3)0.011 (3)−0.004 (3)0.002 (3)
O40.041 (3)0.036 (3)0.064 (3)−0.003 (2)−0.009 (3)0.007 (3)
O50.047 (3)0.030 (3)0.059 (3)0.000 (2)−0.014 (3)0.008 (2)
O60.055 (3)0.027 (3)0.044 (3)−0.005 (2)−0.002 (2)−0.011 (2)
N10.059 (4)0.033 (3)0.061 (4)0.001 (3)−0.008 (3)0.001 (3)
N20.047 (4)0.033 (3)0.042 (3)−0.006 (3)0.001 (3)−0.001 (3)
C10.039 (5)0.035 (4)0.055 (5)0.002 (3)−0.004 (4)0.003 (3)
C20.048 (5)0.049 (5)0.062 (5)−0.003 (4)−0.012 (4)−0.006 (4)
C30.064 (6)0.055 (5)0.077 (6)−0.007 (5)−0.019 (5)−0.014 (5)
C40.051 (5)0.039 (4)0.075 (6)−0.008 (4)−0.007 (4)−0.002 (4)
C50.092 (8)0.046 (5)0.114 (8)−0.016 (5)−0.034 (7)−0.012 (6)
C60.106 (9)0.033 (5)0.118 (9)−0.011 (5)−0.021 (7)−0.015 (5)
C70.075 (7)0.035 (4)0.081 (6)−0.002 (4)−0.008 (5)−0.003 (4)
C80.096 (8)0.031 (4)0.099 (7)0.010 (5)−0.017 (6)0.005 (5)
C90.101 (8)0.038 (5)0.110 (8)0.014 (5)−0.037 (7)0.006 (5)
C100.071 (7)0.045 (5)0.086 (6)−0.002 (4)−0.027 (5)0.006 (5)
C110.057 (5)0.028 (4)0.061 (5)−0.009 (4)0.003 (4)−0.003 (4)
C120.055 (5)0.031 (4)0.048 (4)−0.006 (4)0.002 (4)−0.001 (3)
C130.035 (4)0.037 (4)0.046 (4)0.000 (4)−0.001 (3)0.000 (4)
C140.051 (5)0.073 (6)0.042 (4)−0.006 (4)0.009 (4)−0.015 (4)
C150.040 (4)0.031 (4)0.059 (5)−0.007 (4)−0.007 (4)−0.003 (4)
C160.065 (6)0.074 (6)0.052 (5)−0.001 (5)0.004 (4)−0.001 (4)
C170.043 (4)0.038 (4)0.046 (4)0.009 (4)0.002 (3)−0.001 (4)
C180.052 (6)0.059 (5)0.057 (5)0.003 (4)−0.007 (4)0.011 (4)

Geometric parameters (Å, °)

Eu1—O12.465 (5)C4—C121.412 (9)
Eu1—O22.443 (5)C4—C51.428 (10)
Eu1—O32.509 (5)C5—C61.335 (11)
Eu1—O42.380 (5)C5—H5A0.9300
Eu1—O5i2.387 (4)C6—C71.434 (11)
Eu1—O62.372 (4)C6—H6A0.9300
Eu1—O6i2.630 (5)C7—C81.407 (10)
Eu1—N12.639 (6)C7—C111.414 (9)
Eu1—N22.613 (6)C8—C91.342 (11)
O1—C131.251 (8)C8—H8A0.9300
O2—C151.240 (8)C9—C101.401 (10)
O3—C151.254 (8)C9—H9A0.9300
O4—C171.262 (8)C10—H10A0.9300
O5—C171.261 (8)C11—C121.456 (10)
O5—Eu1i2.387 (4)C13—O6i1.276 (7)
O6—C13i1.276 (7)C13—C141.484 (10)
O6—Eu1i2.630 (5)C14—H14A0.9600
N1—C101.328 (9)C14—H14B0.9600
N1—C111.358 (8)C14—H14C0.9600
N2—C11.342 (8)C15—C161.501 (11)
N2—C121.346 (8)C16—H16A0.9600
C1—C21.381 (9)C16—H16B0.9600
C1—H1A0.9300C16—H16C0.9600
C2—C31.356 (10)C17—C181.509 (9)
C2—H2A0.9300C18—H18A0.9600
C3—C41.409 (11)C18—H18B0.9600
C3—H3A0.9300C18—H18C0.9600
O6—Eu1—O475.50 (15)C2—C3—H3A120.1
O6—Eu1—O5i76.58 (15)C4—C3—H3A120.1
O4—Eu1—O5i136.96 (17)C3—C4—C12117.0 (7)
O6—Eu1—O284.76 (16)C3—C4—C5123.5 (7)
O4—Eu1—O279.46 (18)C12—C4—C5119.5 (7)
O5i—Eu1—O2129.42 (18)C6—C5—C4121.8 (8)
O6—Eu1—O1125.90 (17)C6—C5—H5A119.1
O4—Eu1—O186.14 (18)C4—C5—H5A119.1
O5i—Eu1—O184.40 (17)C5—C6—C7121.3 (8)
O2—Eu1—O1141.47 (16)C5—C6—H6A119.3
O6—Eu1—O378.98 (17)C7—C6—H6A119.3
O4—Eu1—O3126.90 (16)C8—C7—C11117.3 (8)
O5i—Eu1—O377.95 (17)C8—C7—C6123.7 (8)
O2—Eu1—O352.29 (16)C11—C7—C6119.0 (8)
O1—Eu1—O3145.03 (16)C9—C8—C7120.4 (8)
O6—Eu1—N2145.30 (17)C9—C8—H8A119.8
O4—Eu1—N2138.49 (16)C7—C8—H8A119.8
O5i—Eu1—N277.60 (16)C8—C9—C10118.3 (8)
O2—Eu1—N294.15 (18)C8—C9—H9A120.9
O1—Eu1—N273.60 (18)C10—C9—H9A120.9
O3—Eu1—N273.25 (18)N1—C10—C9124.7 (8)
O6—Eu1—O6i75.36 (17)N1—C10—H10A117.7
O4—Eu1—O6i71.21 (16)C9—C10—H10A117.7
O5i—Eu1—O6i70.45 (16)N1—C11—C7122.6 (7)
O2—Eu1—O6i147.77 (16)N1—C11—C12117.8 (6)
O1—Eu1—O6i50.54 (15)C7—C11—C12119.6 (7)
O3—Eu1—O6i142.95 (15)N2—C12—C4123.0 (7)
N2—Eu1—O6i116.62 (16)N2—C12—C11118.2 (6)
O6—Eu1—N1146.45 (16)C4—C12—C11118.7 (6)
O4—Eu1—N176.66 (18)O1—C13—O6i119.3 (7)
O5i—Eu1—N1136.95 (16)O1—C13—C14120.7 (6)
O2—Eu1—N172.03 (18)O6i—C13—C14120.0 (7)
O1—Eu1—N169.92 (18)C13—C14—H14A109.5
O3—Eu1—N1103.7 (2)C13—C14—H14B109.5
N2—Eu1—N162.53 (18)H14A—C14—H14B109.5
O6i—Eu1—N1112.49 (18)C13—C14—H14C109.5
C13—O1—Eu199.3 (4)H14A—C14—H14C109.5
C15—O2—Eu194.4 (4)H14B—C14—H14C109.5
C15—O3—Eu191.0 (5)O2—C15—O3122.2 (7)
C17—O4—Eu1137.6 (4)O2—C15—C16118.7 (7)
C17—O5—Eu1i137.0 (4)O3—C15—C16119.1 (7)
C13i—O6—Eu1164.5 (5)C15—C16—H16A109.5
C13i—O6—Eu1i90.8 (4)C15—C16—H16B109.5
Eu1—O6—Eu1i104.64 (16)H16A—C16—H16B109.5
C10—N1—C11116.8 (7)C15—C16—H16C109.5
C10—N1—Eu1123.3 (5)H16A—C16—H16C109.5
C11—N1—Eu1119.8 (4)H16B—C16—H16C109.5
C1—N2—C12117.2 (6)O4—C17—O5126.3 (6)
C1—N2—Eu1121.8 (4)O4—C17—C18116.8 (7)
C12—N2—Eu1120.9 (5)O5—C17—C18116.9 (7)
N2—C1—C2123.9 (7)C17—C18—H18A109.5
N2—C1—H1A118.1C17—C18—H18B109.5
C2—C1—H1A118.1H18A—C18—H18B109.5
C3—C2—C1119.1 (7)C17—C18—H18C109.5
C3—C2—H2A120.5H18A—C18—H18C109.5
C1—C2—H2A120.5H18B—C18—H18C109.5
C2—C3—C4119.9 (7)

Symmetry codes: (i) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2358).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lima, P. P., Paz, F. A. A., Ferreira, R. A. S., Bermudez, V. de Z. & Carlos, L. D. (2009). Chem. Mater.21, 5099–5111.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Prasad, T. K. & Rajasekharan, M. V. (2009). Inorg. Chem.48, 11543–11550. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xiang, S., Hu, S., Sheng, T., Chen, J. & Wu, X. (2009). Chem. Eur. J.15, 12496–12502. [PubMed]
  • Yang, P., Wu, J.-Z. & Yu, Y. (2009). Inorg. Chim. Acta, 362, 1907–1912.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography