PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3209.
Published online 2010 November 17. doi:  10.1107/S1600536810046039
PMCID: PMC3011767

N-Crotylphthalimide

Abstract

In the title compound {systematic name: 2-[(E)-but-2-en-1-yl]isoindoline-1,3-dione}, C12H11NO2, the phthalimide ring system is essentially planar, with a maximum deviation of 0.008 (1) Å, while the plane of the N-crotyl substituent is orthogonal to the phthalimide ring system, making a dihedral angle of 87.5 (1)°.

Related literature

For related structures, see: Warzecha, Görner & Griesbeck (2006 [triangle]): Warzecha, Lex & Griesbeck (2006 [triangle]); Mustaphi et al. (2001 [triangle]). For details of inter­molecular inter­actions, see: Desiraju (1991 [triangle]); Steiner (2002 [triangle]); Etter et al. (1990 [triangle]). For the synthesis of N-crotylphtalimide, see: Roberts & Mazur (1951 [triangle]); Mowery et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3209-scheme1.jpg

Experimental

Crystal data

  • C12H11NO2
  • M r = 201.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3209-efi2.jpg
  • a = 8.1880 (4) Å
  • b = 12.0830 (5) Å
  • c = 10.8080 (5) Å
  • β = 110.431 (4)°
  • V = 1002.03 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 123 K
  • 0.36 × 0.32 × 0.2 mm

Data collection

  • Oxford Diffraction Gemini Atlas CCD diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.973, T max = 0.983
  • 7022 measured reflections
  • 1959 independent reflections
  • 1669 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.080
  • S = 1.06
  • 1959 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction (2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046039/is2623sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046039/is2623Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their gratitude to the Department of Inorganic Chemistry and Nuclear, Facultad de Química-UNAM, for the facilities to perform the experimental work.

supplementary crystallographic information

Comment

Structure-activity relationship studies on N-allylphthalimide derivatives indicated that the influence of the allylic substituent on the photophysical and electrochemical properties of the phthalimide chromophore, which plays an important role as an electron acceptor in photo-induced electron-transfer reactions (Warzecha, Görner & Griesbeck, 2006).

The structure of N-crotylphthalimide (I) is shown in Fig. 1. The 2-butenyl substituent at the imide N atom of the planar phthalimide adopts an antiperiplanar conformation with torsion angles C1—N1—C9—C10 and N1—C9—C10—C11 of 92.53 and -131.59 (1)°; to difference of the orientation synperiplanar of N-Allylphthalimide (Mustaphi et al., 2001; Warzecha, Lex & Griesbeck, 2006). The phthalimide ring system is essentially planar, with a maximum deviation of 0.008 (1)Å for atom C1 and dihedral angle of 0.13 to 1.39 (1)°, for other hand, the dihedral angle of 92.53 (1)° evidence that the N-crotyl group is orthogonal to the the phthalimide ring plane.

In the crystal structure, the intermolecular contact of 2.649 (1) Å between each molecule features pairs of Cvinyl—H and O=C bonds (Desiraju, 1991; Steiner, 2002) to its neighbours related by the symmetry operations x,-y + 1/2,+z + 1/2 and x,-y + 1/2,+z - 1/2 mainly. These interactions of van der Waals lead to infinite ribbons of R22 (13) motifs (Etter & MacDonald, 1990), as illustrated in Fig. 2. The ribbons run in the direction of the crystallographic c axis.

Experimental

N-crotylphtalimide (I) was prepared according to the procedure reported (Roberts & Mazur, 1951). Under argon, crotyl bromide (85% pure; 25 g; 157.4 mmol) was added with stirring at room temperature to a white suspension of potassium phthalimide (43.7 g; 236 mmol) in dimethylformamide (150 ml). The mixture was heated at 120° C for 30 minutes and then at 160° C for an additional 30 minutes. The hot mixture was poured over 50 g of ice-water and extracted with chloroform (4 × 20 ml). The combined extracts were washed successively with 1 N NaOH, water, 0.5 N HCl and again with water. The chloroform solution was dried over MgSO4 and filtered.

Refinement

H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl groups.

Figures

Fig. 1.
The molecular structure and the atom-labelling scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.
Fig. 2.
Intermolecular contacts of van der Waals (dashed lines) in the crystal structure of (I), forming cross-linked ribbons of R22 (13) motifs.

Crystal data

C12H11NO2F(000) = 424
Mr = 201.22Dx = 1.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1880 (4) ÅCell parameters from 4695 reflections
b = 12.0830 (5) Åθ = 3.8–26.0°
c = 10.8080 (5) ŵ = 0.09 mm1
β = 110.431 (4)°T = 123 K
V = 1002.03 (8) Å3Block, colorless
Z = 40.36 × 0.32 × 0.2 mm

Data collection

Oxford Diffraction Gemini Atlas CCD diffractometer1959 independent reflections
graphite1669 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.016
ω scansθmax = 26.1°, θmin = 3.9°
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009)h = −10→10
Tmin = 0.973, Tmax = 0.983k = −14→13
7022 measured reflectionsl = −13→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0389P)2 + 0.204P] where P = (Fo2 + 2Fc2)/3
1959 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.32549 (11)0.11878 (7)0.22557 (8)0.0293 (2)
O2−0.00316 (11)0.09982 (7)−0.21251 (8)0.0299 (2)
N10.13954 (11)0.13240 (7)0.00921 (9)0.0201 (2)
C30.21517 (14)−0.02776 (9)−0.07262 (11)0.0200 (2)
C10.26809 (13)0.08188 (9)0.11487 (10)0.0202 (2)
C80.31372 (14)−0.02229 (9)0.06096 (11)0.0200 (2)
C70.43062 (14)−0.10496 (10)0.12205 (12)0.0260 (3)
H70.4963−0.10170.21160.031*
C110.19618 (14)0.42523 (9)0.04805 (11)0.0237 (3)
H110.1750.42840.12710.028*
C20.10193 (14)0.07222 (9)−0.10729 (10)0.0204 (2)
C120.27941 (15)0.52388 (9)0.01158 (12)0.0276 (3)
H12A0.3030.5085−0.06770.041*
H12B0.38660.54050.08190.041*
H12C0.20220.5862−0.00290.041*
C40.23032 (15)−0.11498 (9)−0.15043 (12)0.0259 (3)
H40.1643−0.1181−0.240.031*
C90.05901 (14)0.23939 (9)0.01554 (11)0.0229 (3)
H9A0.06050.25120.10470.027*
H9B−0.06170.2379−0.04290.027*
C60.44640 (15)−0.19339 (10)0.04444 (13)0.0307 (3)
H60.5239−0.25030.08290.037*
C50.34873 (16)−0.19817 (10)−0.08913 (13)0.0307 (3)
H50.3625−0.258−0.13870.037*
C100.15001 (14)0.33373 (9)−0.02266 (11)0.0217 (3)
H100.17530.3277−0.09990.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0324 (5)0.0331 (5)0.0201 (4)−0.0027 (4)0.0062 (4)−0.0045 (3)
O20.0310 (5)0.0331 (5)0.0208 (4)0.0034 (4)0.0031 (4)0.0009 (3)
N10.0217 (5)0.0184 (5)0.0202 (5)0.0006 (4)0.0073 (4)−0.0009 (4)
C30.0203 (5)0.0184 (5)0.0235 (6)−0.0041 (4)0.0106 (4)0.0005 (4)
C10.0197 (5)0.0218 (6)0.0201 (6)−0.0037 (4)0.0081 (5)0.0013 (4)
C80.0188 (5)0.0194 (6)0.0239 (6)−0.0039 (4)0.0099 (4)0.0015 (4)
C70.0210 (6)0.0256 (6)0.0312 (6)−0.0014 (5)0.0088 (5)0.0071 (5)
C110.0219 (6)0.0254 (6)0.0243 (6)0.0029 (5)0.0084 (5)0.0019 (5)
C20.0199 (5)0.0215 (6)0.0204 (6)−0.0036 (4)0.0079 (5)0.0001 (4)
C120.0249 (6)0.0228 (6)0.0335 (7)0.0003 (5)0.0083 (5)0.0007 (5)
C40.0304 (6)0.0220 (6)0.0293 (6)−0.0064 (5)0.0154 (5)−0.0039 (5)
C90.0228 (6)0.0199 (6)0.0278 (6)0.0023 (4)0.0112 (5)−0.0013 (4)
C60.0254 (6)0.0206 (6)0.0503 (8)0.0025 (5)0.0185 (6)0.0080 (5)
C50.0360 (7)0.0181 (6)0.0470 (8)−0.0027 (5)0.0259 (6)−0.0035 (5)
C100.0202 (5)0.0219 (6)0.0242 (6)0.0033 (4)0.0093 (5)0.0021 (4)

Geometric parameters (Å, °)

O1—C11.2076 (13)C11—H110.93
O2—C21.2091 (13)C12—H12A0.96
N1—C21.3923 (14)C12—H12B0.96
N1—C11.3948 (14)C12—H12C0.96
N1—C91.4637 (14)C4—C51.3931 (17)
C3—C41.3807 (15)C4—H40.93
C3—C81.3880 (16)C9—C101.4966 (15)
C3—C21.4888 (15)C9—H9A0.97
C1—C81.4885 (15)C9—H9B0.97
C8—C71.3815 (16)C6—C51.3860 (18)
C7—C61.3920 (17)C6—H60.93
C7—H70.93C5—H50.93
C11—C101.3220 (16)C10—H100.93
C11—C121.4926 (16)
C2—N1—C1112.17 (9)H12A—C12—H12B109.5
C2—N1—C9122.86 (9)C11—C12—H12C109.5
C1—N1—C9124.88 (9)H12A—C12—H12C109.5
C4—C3—C8121.78 (10)H12B—C12—H12C109.5
C4—C3—C2130.28 (10)C3—C4—C5117.17 (11)
C8—C3—C2107.94 (9)C3—C4—H4121.4
O1—C1—N1124.83 (10)C5—C4—H4121.4
O1—C1—C8129.49 (10)N1—C9—C10112.59 (9)
N1—C1—C8105.68 (9)N1—C9—H9A109.1
C7—C8—C3121.13 (10)C10—C9—H9A109.1
C7—C8—C1130.62 (10)N1—C9—H9B109.1
C3—C8—C1108.25 (9)C10—C9—H9B109.1
C8—C7—C6117.49 (11)H9A—C9—H9B107.8
C8—C7—H7121.3C5—C6—C7121.23 (11)
C6—C7—H7121.3C5—C6—H6119.4
C10—C11—C12125.45 (11)C7—C6—H6119.4
C10—C11—H11117.3C6—C5—C4121.20 (11)
C12—C11—H11117.3C6—C5—H5119.4
O2—C2—N1124.52 (10)C4—C5—H5119.4
O2—C2—C3129.55 (10)C11—C10—C9123.16 (10)
N1—C2—C3105.93 (9)C11—C10—H10118.4
C11—C12—H12A109.5C9—C10—H10118.4
C11—C12—H12B109.5
C2—N1—C1—O1178.65 (10)C1—N1—C2—C31.06 (12)
C9—N1—C1—O12.11 (17)C9—N1—C2—C3177.68 (9)
C2—N1—C1—C8−1.51 (12)C4—C3—C2—O2−0.1 (2)
C9—N1—C1—C8−178.05 (9)C8—C3—C2—O2179.95 (11)
C4—C3—C8—C7−0.57 (16)C4—C3—C2—N1179.84 (11)
C2—C3—C8—C7179.40 (9)C8—C3—C2—N1−0.13 (11)
C4—C3—C8—C1179.26 (10)C8—C3—C4—C50.25 (16)
C2—C3—C8—C1−0.77 (11)C2—C3—C4—C5−179.71 (10)
O1—C1—C8—C71.02 (19)C2—N1—C9—C10−83.65 (12)
N1—C1—C8—C7−178.81 (11)C1—N1—C9—C1092.53 (12)
O1—C1—C8—C3−178.78 (11)C8—C7—C6—C50.12 (17)
N1—C1—C8—C31.39 (11)C7—C6—C5—C4−0.43 (17)
C3—C8—C7—C60.37 (16)C3—C4—C5—C60.24 (16)
C1—C8—C7—C6−179.42 (10)C12—C11—C10—C9−176.94 (10)
C1—N1—C2—O2−179.01 (10)N1—C9—C10—C11−131.59 (11)
C9—N1—C2—O2−2.39 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2623).

References

  • Desiraju, G. R. (1991). Acc. Chem. Res.24, 290–296.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Mowery, B. P., Lee, S. E., Kissounko, D. A., Epand, R. F., Epand, R. M., Weisblum, B., Stahl, S. S. & Gellman, S. H. (2007). J. Am. Chem. Soc.129, 15474–15476. [PubMed]
  • Mustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176–o177.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Roberts, J. D. & Mazur, R. H. (1951). J. Am. Chem. Soc.72, 2509–2520.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steiner, T. (2002). Angew. Chem. Int. Ed.41, 48–76. [PubMed]
  • Warzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356–3363. [PubMed]
  • Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006). Acta Cryst. E62, o5445–o5447.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography