PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3288.
Published online 2010 November 24. doi:  10.1107/S1600536810043862
PMCID: PMC3011760

4-Anilino-3-nitro­benzonitrile

Abstract

In the title compound, C13H9N3O2, the aromatic rings are twisted with respect to each other, making a dihedral angle of 49.41 (9)°. The nitro group and the nitrile group are nearly in the plane of the benzonitrile ring, the largest deviation from the plane being 0.123 (1) Å. There is an intra­molecular N—H(...)O hydrogen bond forming an S(6) ring. Weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into a chain parallel to the c axis. Futhermore, slipped π–π inter­actions between symmetry-related phenyl rings [centroid–centroid distance 3.808 (1) Å, inter­planar distance 3.544 (8) Å with an offset of 21.5°] stabilize the structure.

Related literature

For the synthesis of the title compound, see: Schelz & Inst (1978 [triangle]). For related structures, see: McWilliam et al. (2001 [triangle]); Li, Liu et al. (2009 [triangle]); Li, Wu et al. (2009 [triangle]). For discussion of hydrogen bonding, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3288-scheme1.jpg

Experimental

Crystal data

  • C13H9N3O2
  • M r = 239.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3288-efi1.jpg
  • a = 14.066 (3) Å
  • b = 7.4290 (15) Å
  • c = 11.652 (2) Å
  • β = 109.04 (3)°
  • V = 1151.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.30 × 0.30 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.972, T max = 0.990
  • 4199 measured reflections
  • 2082 independent reflections
  • 1546 reflections with I > 2σ(I)
  • R int = 0.030
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.107
  • S = 1.04
  • 2082 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043862/dn2613sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043862/dn2613Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Shan Liu from Nanjing University of Technology for useful discussion and the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The molecule of the title compound is non planar, the two phenyl rings make a dihedral angle of 49.41 (9)°. The nitro and nitrile groups are nearly in the plane of the C7–C12 phenyl ring with the largest deviation being 0.123 (1) Å at O2 (Fig. 1). Bond lengths and bond angles agree with related structures recently reported (Li, Liu et al., 2009; Li, Wu et al., 2009; McWilliam et al., 2001)

There is an intramolecular N-H···O hydrogen bond forming S(6) ring (Etter et al., 1990; Bernstein et al., 1995). A weak intermolecular C-H···O interactions link the molecule into a chain parallel to the c axis (Table 1, Fig. 2). Futhermore sliipest π-π interaction between symmetry related phenyl rings (symmetry code: (i) x,3/2-y,1/2+z) stabilize the structure (centroid to centroid 3.808 (1)Å, interplanar distance 3.544 (8)Å with an offset of 21.5° .

Experimental

4-chloro-3-nitrobenzonitrile (4.0 g, 0.022 mol)was heat in 10 ml fresh distilled aniline for 18 h at 403 K. After reaction completed (TLC control) was added 50 ml e thanol, at room temperature. The brown precipitate was sucked, washed with cold ethanol(2*15 ml), dried over sodium sulfateand gave 3.3 g(63%) (Schelz & Inst,1978). Pure compound (I) was obstained by crystallizing from ethanol. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing view of (I) showing the infinite chain formed by C-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) x, y, z+1]

Crystal data

C13H9N3O2F(000) = 496
Mr = 239.23Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 14.066 (3) Åθ = 9–13°
b = 7.4290 (15) ŵ = 0.10 mm1
c = 11.652 (2) ÅT = 293 K
β = 109.04 (3)°Block, colourless
V = 1151.0 (4) Å30.30 × 0.30 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1546 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
graphiteθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = −16→15
Absorption correction: ψ scan (North et al., 1968)k = −8→8
Tmin = 0.972, Tmax = 0.990l = 0→13
4199 measured reflections3 standard reflections every 200 reflections
2082 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1451P] where P = (Fo2 + 2Fc2)/3
2082 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.91767 (8)0.4271 (2)0.39718 (10)0.0665 (4)
O20.84253 (9)0.43363 (19)0.20463 (10)0.0659 (4)
N10.82164 (10)0.5168 (2)0.54802 (11)0.0545 (4)
H10.87740.48450.53880.065*
N20.84229 (10)0.45587 (19)0.30832 (11)0.0485 (4)
N30.43509 (11)0.6904 (2)0.03546 (14)0.0699 (5)
C10.74708 (13)0.4539 (2)0.70743 (15)0.0570 (5)
H1B0.69210.39790.65170.068*
C20.75504 (15)0.4625 (3)0.82822 (17)0.0669 (5)
H2A0.70420.41430.85350.080*
C30.83667 (16)0.5411 (3)0.91186 (16)0.0695 (6)
H3A0.84140.54510.99330.083*
C40.91129 (15)0.6136 (3)0.87473 (16)0.0656 (5)
H4A0.96710.66590.93140.079*
C50.90432 (12)0.6097 (3)0.75389 (14)0.0537 (4)
H5A0.95480.66050.72900.064*
C60.82202 (11)0.5299 (2)0.67003 (13)0.0463 (4)
C70.74482 (11)0.5487 (2)0.44502 (13)0.0438 (4)
C80.65218 (12)0.6207 (2)0.44808 (14)0.0489 (4)
H8A0.64470.64440.52300.059*
C90.57426 (12)0.6561 (2)0.34586 (14)0.0506 (4)
H9A0.51500.70390.35200.061*
C100.58206 (11)0.6214 (2)0.23110 (14)0.0461 (4)
C110.67092 (11)0.5533 (2)0.22313 (13)0.0455 (4)
H11A0.67710.53000.14740.055*
C120.75095 (11)0.5196 (2)0.32739 (13)0.0432 (4)
C130.49993 (12)0.6596 (2)0.12224 (15)0.0524 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0436 (7)0.1033 (11)0.0496 (7)0.0174 (7)0.0112 (5)−0.0019 (6)
O20.0553 (7)0.1003 (11)0.0471 (7)0.0071 (7)0.0237 (6)−0.0053 (6)
N10.0437 (7)0.0796 (11)0.0403 (7)0.0117 (7)0.0140 (6)0.0013 (7)
N20.0431 (7)0.0617 (9)0.0421 (7)0.0019 (7)0.0157 (6)−0.0028 (6)
N30.0545 (9)0.0920 (13)0.0557 (9)0.0140 (9)0.0076 (8)0.0037 (9)
C10.0556 (10)0.0621 (11)0.0535 (10)−0.0002 (9)0.0182 (8)0.0053 (9)
C20.0700 (12)0.0752 (13)0.0661 (12)0.0131 (11)0.0369 (10)0.0185 (10)
C30.0884 (15)0.0803 (14)0.0438 (10)0.0311 (12)0.0268 (10)0.0111 (9)
C40.0634 (11)0.0753 (13)0.0466 (10)0.0174 (10)0.0022 (9)−0.0035 (9)
C50.0428 (9)0.0686 (11)0.0476 (9)0.0092 (8)0.0120 (7)0.0026 (8)
C60.0449 (8)0.0540 (10)0.0394 (8)0.0119 (8)0.0130 (7)0.0038 (7)
C70.0430 (8)0.0468 (9)0.0418 (8)−0.0007 (7)0.0140 (7)−0.0001 (7)
C80.0485 (9)0.0578 (10)0.0431 (9)0.0042 (8)0.0189 (7)−0.0009 (8)
C90.0431 (9)0.0561 (10)0.0543 (10)0.0058 (8)0.0181 (8)0.0022 (8)
C100.0395 (8)0.0509 (10)0.0450 (9)−0.0007 (7)0.0102 (7)0.0020 (7)
C110.0461 (9)0.0509 (10)0.0394 (8)−0.0027 (7)0.0140 (7)−0.0013 (7)
C120.0389 (8)0.0472 (9)0.0442 (8)0.0013 (7)0.0144 (7)−0.0013 (7)
C130.0449 (9)0.0615 (11)0.0502 (9)0.0041 (8)0.0148 (8)0.0021 (8)

Geometric parameters (Å, °)

O1—N21.2352 (16)C4—C51.379 (2)
O2—N21.2206 (16)C4—H4A0.9300
N1—C71.3483 (18)C5—C61.382 (2)
N1—C61.4232 (19)C5—H5A0.9300
N1—H10.8600C7—C121.418 (2)
N2—C121.4529 (19)C7—C81.420 (2)
N3—C131.142 (2)C8—C91.356 (2)
C1—C21.377 (2)C8—H8A0.9300
C1—C61.385 (2)C9—C101.401 (2)
C1—H1B0.9300C9—H9A0.9300
C2—C31.371 (3)C10—C111.379 (2)
C2—H2A0.9300C10—C131.438 (2)
C3—C41.369 (3)C11—C121.383 (2)
C3—H3A0.9300C11—H11A0.9300
C7—N1—C6128.16 (14)C5—C6—N1117.71 (15)
C7—N1—H1115.9C1—C6—N1122.08 (15)
C6—N1—H1115.9N1—C7—C12123.37 (14)
O2—N2—O1121.83 (13)N1—C7—C8121.29 (14)
O2—N2—C12118.93 (13)C12—C7—C8115.30 (14)
O1—N2—C12119.24 (13)C9—C8—C7122.46 (15)
C2—C1—C6119.09 (17)C9—C8—H8A118.8
C2—C1—H1B120.5C7—C8—H8A118.8
C6—C1—H1B120.5C8—C9—C10120.70 (15)
C3—C2—C1121.11 (18)C8—C9—H9A119.7
C3—C2—H2A119.4C10—C9—H9A119.7
C1—C2—H2A119.4C11—C10—C9119.11 (14)
C4—C3—C2119.57 (17)C11—C10—C13119.86 (15)
C4—C3—H3A120.2C9—C10—C13121.01 (15)
C2—C3—H3A120.2C10—C11—C12120.19 (15)
C3—C4—C5120.51 (18)C10—C11—H11A119.9
C3—C4—H4A119.7C12—C11—H11A119.9
C5—C4—H4A119.7C11—C12—C7122.20 (14)
C4—C5—C6119.68 (18)C11—C12—N2115.57 (13)
C4—C5—H5A120.2C7—C12—N2122.22 (13)
C6—C5—H5A120.2N3—C13—C10179.6 (2)
C5—C6—C1120.02 (15)
C6—C1—C2—C3−1.5 (3)C8—C9—C10—C11−1.1 (3)
C1—C2—C3—C40.5 (3)C8—C9—C10—C13−179.63 (16)
C2—C3—C4—C50.7 (3)C9—C10—C11—C120.1 (2)
C3—C4—C5—C6−0.8 (3)C13—C10—C11—C12178.70 (15)
C4—C5—C6—C1−0.1 (3)C10—C11—C12—C71.5 (2)
C4—C5—C6—N1−175.33 (16)C10—C11—C12—N2−177.32 (14)
C2—C1—C6—C51.3 (3)N1—C7—C12—C11179.94 (15)
C2—C1—C6—N1176.26 (16)C8—C7—C12—C11−2.1 (2)
C7—N1—C6—C5−137.13 (18)N1—C7—C12—N2−1.3 (2)
C7—N1—C6—C147.8 (3)C8—C7—C12—N2176.63 (15)
C6—N1—C7—C12−175.60 (16)O2—N2—C12—C11−1.2 (2)
C6—N1—C7—C86.6 (3)O1—N2—C12—C11178.27 (15)
N1—C7—C8—C9179.15 (16)O2—N2—C12—C7180.00 (15)
C12—C7—C8—C91.2 (2)O1—N2—C12—C7−0.6 (2)
C7—C8—C9—C100.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.6280 (18)134
C3—H3A···O2i0.932.593.478 (2)159

Symmetry codes: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2613).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Li, H.-Y., Wu, Y.-Z., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o1381. [PMC free article] [PubMed]
  • Li, H.-Y., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o91. [PMC free article] [PubMed]
  • McWilliam, S. A., Skakle, J. M. S., Wardell, J. L., Low, J. N. & Glidewell, C. (2001). Acta Cryst. C57, 946–948. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Schelz, D. & Inst, F. (1978). Helv. Chim. Acta, 61, 2452–2462.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography