PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3314.
Published online 2010 November 27. doi:  10.1107/S1600536810048579
PMCID: PMC3011759

2-Hy­droxy-5-[(E)-(1H-indol-3-yl­methyl­idene)aza­nium­yl]benzoate

Abstract

The zwitterionic title compound, C16H12N2O3, was obtained as a result of the condensation of 5-amino­salicylic acid and 1H-indole-3-carbaldehyde. The whole mol­ecule is roughly planar: the 4-hy­droxy­anilinic group and the 1H-indole-3-carbaldehyde moieties are only slightly twisted, making a dihedral angle of 7.77 (11)°, whereas, the carboxyl­ate group makes a dihedral angle of 3.34 (45)° with the parent 4-hy­droxy­anilinic group. S(6) ring motifs are formed due to intra­molecular O—H(...)O hydrogen bonding. In the crystal, inter­molecular N—H(...)O and C—H(...)O hydrogen bonds build up pseudo-rings with R 1 2(4), R 2 1(7) and R 2 2(14) ring motifs. These pseudo-dimers are further linked by N—H(...)O hydrogen bonds into a chain extending along [101]. C—H(...)π inter­actions also occur, along with offset π–π inter­actions between the anilinic phenyl and the heterocyclic five-membered rings with a centroid–centroid distance of 3.5716 (19) Å.

Related literature

For background to our ongoing work on the synthesis and ligand properties of Schiff bases derived from 2-hydroxy-5-aminobenzoic acid, see: Tahir et al. (2010a [triangle],b [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3314-scheme1.jpg

Experimental

Crystal data

  • C16H12N2O3
  • M r = 280.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3314-efi1.jpg
  • a = 7.3463 (6) Å
  • b = 15.5496 (12) Å
  • c = 11.5310 (8) Å
  • β = 104.619 (4)°
  • V = 1274.57 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.24 × 0.14 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.980, T max = 0.988
  • 9888 measured reflections
  • 2313 independent reflections
  • 1169 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.152
  • S = 1.00
  • 2313 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048579/dn2627sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048579/dn2627Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

As a part of our on going project related to synthesize various Schiff bases of 2-hydroxy-5-aminobenzoic acid and then their metal complexation (Tahir et al., 2010a,b), we report here the title compound (I).

The title compound (I) is Zwitterion similar to 2-hydroxy-5-{[(E)-4-methoxybenzylidene]azaniumyl}benzoate (Tahir et al., 2010b). In (I), the group A (C2—C7/N1/O3) of 5-aminosalicylic acid moiety and the 1H-indole-3-carbaldehyde moiety B (C8—C15/N2) are almost planar with r. m. s. deviations of 0.0258 and 0.0175 Å, respectively (Fig. 1). The dihedral angle between A/B is 7.77 (11)°. The carboxylate group C (O1/C1/O2) is oriented at a dihedral angle of 3.34 (45)° with the parent group A. The observed values of C═N and C═O are 1.298 (5) and 1.254 (4) Å, respectively compared to 1.291 (2) and 1.242 (2) Å observed in related compound (Tahir et al., 2010b).

In the title compound S(6) ring motif (Etter, 1990; Bernstein et al., 1995), is formed due to intramolecular H-bonding of O—H···O type (Table 1, Fig. 1). The N—H···O type of H-bondings build up a pseudo dimer with R22(14) ring motifs (Table 1, Fig. 2). The C—H···O and N—H···O types of H-bondings (Table 2) complete R12(4) and R21(7) ring motifs (Table 1, Fig. 2). The pseudo dimers are interlinked due to H-bonding of N—H···O type (Table 1, Fig. 2) resulting in dimensional polymeric chains extending along the crystallographic [1 0 1] axis. A C—H···π (Table 1) and offset π–π interaction between the benzene ring (C2—C7) of anilinic and heterocyclic five membered (N2/C15/C10/C9/C16) groups at a distance of 3.5716 (19) Å, with plane to plane distance of 3.25 and 3.41 Å and mean offset angle of 20.9°, play important role in stabilizing the molecules.

Experimental

Equimolar quantities of 1H-indole-3-carbaldehyde and and 5-amino-2-hydroxybenzoic acid were refluxed in methanol along with few drops of acetic acid as catalyst for 30 min resulting in orange yellow solution. The solution was kept at room temperature which affoarded orange needles after five days.

Refinement

The H-atoms were positioned geometrically (O–H = 0.82, N–H = 0.86, C–H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N, O).

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line represent the intramolecular H-bonding.
Fig. 2.
Partial packing view showing the formation of dimers through different ring motifs and infinite one dimensional polymeric chains. [Symmetry codes: (i) -x+2, -y, -z; (ii) x-1, y, z-1]

Crystal data

C16H12N2O3F(000) = 584
Mr = 280.28Dx = 1.461 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1169 reflections
a = 7.3463 (6) Åθ = 2.3–25.3°
b = 15.5496 (12) ŵ = 0.10 mm1
c = 11.5310 (8) ÅT = 296 K
β = 104.619 (4)°Needle, orange
V = 1274.57 (17) Å30.24 × 0.14 × 0.12 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2313 independent reflections
Radiation source: fine-focus sealed tube1169 reflections with I > 2σ(I)
graphiteRint = 0.080
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 2.3°
ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −18→18
Tmin = 0.980, Tmax = 0.988l = −13→13
9888 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0622P)2] where P = (Fo2 + 2Fc2)/3
2313 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.2830 (3)0.00635 (16)0.14061 (19)0.0527 (10)
O21.3616 (3)0.01396 (16)0.34045 (19)0.0529 (10)
O31.1429 (3)0.07152 (17)0.44973 (17)0.0486 (9)
N10.6066 (4)0.10087 (18)0.0169 (2)0.0394 (10)
N20.1653 (4)0.11644 (18)−0.3115 (2)0.0408 (10)
C11.2446 (5)0.0237 (2)0.2380 (3)0.0375 (12)
C21.0566 (4)0.0584 (2)0.2369 (3)0.0334 (11)
C31.0142 (5)0.0819 (2)0.3454 (3)0.0364 (11)
C40.8368 (5)0.1138 (2)0.3417 (3)0.0459 (13)
C50.7012 (5)0.1219 (2)0.2364 (3)0.0424 (14)
C60.7423 (4)0.0983 (2)0.1288 (3)0.0338 (11)
C70.9190 (4)0.0666 (2)0.1312 (3)0.0349 (11)
C80.4406 (5)0.1355 (2)−0.0070 (3)0.0387 (11)
C90.3080 (5)0.1370 (2)−0.1184 (3)0.0344 (11)
C100.1205 (4)0.1715 (2)−0.1405 (3)0.0324 (11)
C110.0164 (5)0.2123 (2)−0.0705 (3)0.0410 (11)
C12−0.1644 (5)0.2377 (2)−0.1229 (3)0.0451 (12)
C13−0.2477 (5)0.2216 (2)−0.2434 (3)0.0476 (14)
C14−0.1494 (5)0.1805 (2)−0.3140 (3)0.0411 (11)
C150.0346 (5)0.1569 (2)−0.2617 (3)0.0350 (11)
C160.3256 (5)0.1038 (2)−0.2278 (3)0.0411 (12)
H10.638090.07659−0.042210.0472*
H20.145810.10162−0.385480.0489*
H31.240720.053150.437050.0584*
H40.809010.130140.412930.0551*
H50.582710.142950.236330.0512*
H70.945850.050430.059620.0420*
H80.405830.162160.056370.0463*
H110.069060.222180.010600.0494*
H12−0.232900.26623−0.077040.0542*
H13−0.371220.23872−0.276420.0567*
H14−0.204700.16904−0.394350.0495*
H160.432380.07717−0.240270.0491*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0458 (16)0.076 (2)0.0390 (14)0.0109 (13)0.0160 (12)−0.0088 (13)
O20.0373 (15)0.079 (2)0.0397 (15)0.0091 (13)0.0048 (12)−0.0035 (14)
O30.0402 (16)0.0743 (19)0.0303 (13)0.0077 (14)0.0070 (11)−0.0027 (12)
N10.0406 (19)0.0466 (19)0.0307 (15)0.0039 (16)0.0087 (13)−0.0042 (14)
N20.0439 (19)0.0481 (19)0.0292 (15)0.0048 (15)0.0071 (14)−0.0045 (14)
C10.036 (2)0.040 (2)0.035 (2)0.0021 (17)0.0063 (17)−0.0006 (17)
C20.034 (2)0.036 (2)0.0306 (18)−0.0016 (16)0.0087 (15)−0.0013 (16)
C30.037 (2)0.041 (2)0.0285 (18)0.0015 (18)0.0033 (16)0.0003 (16)
C40.050 (2)0.060 (3)0.0279 (18)0.008 (2)0.0104 (17)−0.0090 (18)
C50.037 (2)0.054 (3)0.036 (2)0.0112 (18)0.0086 (16)−0.0048 (18)
C60.035 (2)0.038 (2)0.0260 (17)0.0012 (17)0.0031 (15)−0.0027 (16)
C70.034 (2)0.042 (2)0.0295 (18)0.0013 (16)0.0093 (15)−0.0038 (16)
C80.041 (2)0.040 (2)0.0348 (19)0.0065 (18)0.0090 (16)0.0011 (17)
C90.036 (2)0.037 (2)0.0288 (17)0.0008 (16)0.0056 (15)−0.0030 (16)
C100.037 (2)0.031 (2)0.0279 (18)−0.0014 (16)0.0058 (15)0.0007 (15)
C110.048 (2)0.042 (2)0.0332 (19)0.0006 (19)0.0109 (17)−0.0011 (17)
C120.044 (2)0.048 (2)0.047 (2)0.0103 (19)0.0181 (18)0.0001 (19)
C130.040 (2)0.056 (3)0.045 (2)0.0095 (19)0.0075 (18)0.004 (2)
C140.043 (2)0.047 (2)0.0308 (19)0.0011 (19)0.0047 (17)0.0003 (17)
C150.037 (2)0.034 (2)0.0352 (19)0.0039 (17)0.0115 (16)0.0028 (16)
C160.037 (2)0.046 (2)0.038 (2)0.0066 (18)0.0050 (17)−0.0019 (18)

Geometric parameters (Å, °)

O1—C11.254 (4)C9—C101.440 (5)
O2—C11.283 (4)C9—C161.399 (5)
O3—C31.339 (4)C10—C151.399 (5)
O3—H30.8200C10—C111.397 (5)
N1—C61.418 (4)C11—C121.371 (5)
N1—C81.298 (5)C12—C131.392 (5)
N2—C161.335 (4)C13—C141.375 (5)
N2—C151.388 (5)C14—C151.384 (5)
N1—H10.8600C4—H40.9300
N2—H20.8600C5—H50.9300
C1—C21.480 (5)C7—H70.9300
C2—C71.379 (5)C8—H80.9300
C2—C31.412 (5)C11—H110.9300
C3—C41.385 (5)C12—H120.9300
C4—C51.368 (5)C13—H130.9300
C5—C61.398 (5)C14—H140.9300
C6—C71.382 (4)C16—H160.9300
C8—C91.403 (5)
C3—O3—H3109.00C9—C10—C11134.9 (3)
C6—N1—C8127.8 (3)C10—C11—C12119.1 (3)
C15—N2—C16110.1 (3)C11—C12—C13121.4 (3)
C8—N1—H1116.00C12—C13—C14120.7 (3)
C6—N1—H1116.00C13—C14—C15117.8 (3)
C16—N2—H2125.00C10—C15—C14122.5 (3)
C15—N2—H2125.00N2—C15—C10107.6 (3)
O2—C1—C2117.3 (3)N2—C15—C14129.9 (3)
O1—C1—O2123.3 (3)N2—C16—C9109.4 (3)
O1—C1—C2119.4 (3)C3—C4—H4119.00
C3—C2—C7118.9 (3)C5—C4—H4119.00
C1—C2—C3120.1 (3)C4—C5—H5120.00
C1—C2—C7121.0 (3)C6—C5—H5120.00
O3—C3—C4121.1 (3)C2—C7—H7119.00
O3—C3—C2120.1 (3)C6—C7—H7119.00
C2—C3—C4118.8 (3)N1—C8—H8117.00
C3—C4—C5121.9 (3)C9—C8—H8117.00
C4—C5—C6119.4 (3)C10—C11—H11120.00
C5—C6—C7119.2 (3)C12—C11—H11120.00
N1—C6—C5122.7 (3)C11—C12—H12119.00
N1—C6—C7118.0 (3)C13—C12—H12119.00
C2—C7—C6121.7 (3)C12—C13—H13120.00
N1—C8—C9126.8 (3)C14—C13—H13120.00
C8—C9—C10125.5 (3)C13—C14—H14121.00
C8—C9—C16128.2 (3)C15—C14—H14121.00
C10—C9—C16106.3 (3)N2—C16—H16125.00
C11—C10—C15118.4 (3)C9—C16—H16125.00
C9—C10—C15106.7 (3)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.902.735 (3)162
N2—H2···O3ii0.861.952.805 (3)171
O3—H3···O20.821.702.448 (3)150
C16—H16···O1i0.932.483.279 (4)144
C16—H16···O2i0.932.553.439 (4)160
C5—H5···Cg3iii0.932.923.643 (4)136

Symmetry codes: (i) −x+2, −y, −z; (ii) x−1, y, z−1; (iii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2627).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tahir, M. N., Shad, H. A., Khan, M. N. & Tariq, M. I. (2010a). Acta Cryst. E66, o2923. [PMC free article] [PubMed]
  • Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010b). Acta Cryst. E66, o2553–o2554. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography