PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1630.
Published online 2010 November 24. doi:  10.1107/S1600536810048014
PMCID: PMC3011758

Bis(2-acetylpyridine-κ2 N,O)silver(I) tetra­fluoridoborate: a complex with silver in a seesaw coordination geometry

Abstract

The reaction of 2-acetylpyridine with silver(I) tetra­fluorido­borate leads to the discrete title complex, [Ag(C7H7NO)2]BF4, in the cation of which the Ag atom is coordinated by two 2-acetylpyridine ligands, each of which is N,O-bidentate, albeit with stronger bonding to the N atoms [Ag—N = 2.2018 (15) and 2.2088 (14) Å; Ag—O = 2.5380 (13) and 2.5454 (13) Å]. The four-coordinate Ag atom has a seesaw coordination geometry with a τ4 index of 0.51. The tetra­fluoridoborate anion is disordered over two orientations with 0.568 (10):0.432 (10) occupancies.

Related literature

For other silver complexes with the same ligand, see: Bowmaker et al. (2005 [triangle]); Drew et al. (2005 [triangle]); Di Nicola et al. (2010 [triangle]). For examples of our previous work on silver complexes, see: Steel (2005 [triangle]); Fitchett & Steel (2006 [triangle]); O’Keefe & Steel (2007) [triangle]; Steel & Fitchett (2008 [triangle]); Golder et al. (2010 [triangle]). For details of the coordination geometry of four-coordinate silver, see: Young & Hanton (2008 [triangle]). For a definition of the τ4 index, see: Yang et al. (2007 [triangle]). 2-acetylpyridine coordin­ates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin, see: Byrn et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1630-scheme1.jpg

Experimental

Crystal data

  • [Ag(C7H7NO)2]BF4
  • M r = 436.95
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1630-efi1.jpg
  • a = 7.2635 (2) Å
  • b = 9.7091 (3) Å
  • c = 11.7390 (4) Å
  • α = 85.624 (2)°
  • β = 81.452 (2)°
  • γ = 75.054 (2)°
  • V = 790.34 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.33 mm−1
  • T = 116 K
  • 0.37 × 0.36 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.805, T max = 1.000
  • 18086 measured reflections
  • 3661 independent reflections
  • 3255 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.051
  • S = 1.01
  • 3661 reflections
  • 247 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond angles (°)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048014/zs2079sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048014/zs2079Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Chemistry Department, University of Canterbury, New Zealand, for funding.

supplementary crystallographic information

Comment

For some time we have been involved in the study of silver complexes of chelating and bridging heterocyclic ligands (Steel, 2005; Fitchett & Steel, 2006; O'Keefe & Steel, 2007; Steel & Fitchett, 2008; Golder et al., 2010). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin (Byrn et al., 1993). X-ray crystal structures have been reported for complexes of 2-acetylpyridine with silver(I) perchlorate (Bowmaker et al., 2005; Drew et al., 2005), trifluoroacetate (Bowmaker et al., 2005), trifluoromethanesulfonate (Di Nicola et al., 2010) and nitrate (Bowmaker et al., 2005). The latter has a single 2-acetylpyridine bound to the silver with a chelating nitrate anion, while the others have two chelating 2-acetylpyridine ligands. We now report the structure of its complex with silver(I) tetrafluoridoborate, the title compound [Ag(C7H7NO)2] BF4 (I).

In (I), the asymmetric unit contains a complex cation comprising a silver(I) atom bound to two bidentate N,O-chelated 2-acetylpyridine ligands [Ag—N, 2.2018 (15), 2.2088 (14) Å; Ag—O, 2.5380 (13), 2.5454 (13) Å], and a tetrafluoridoborate counter-anion (Fig. 1). The tetrafluoridoborate anion is disordered over two orientations with relative F occupancies of 57:43% about a common central B. Since the silver atom makes no other contacts less than 2.72 Å it should be classified as four-coordinate (Young & Hanton, 2008). Calculation of the τ4 index (Yang et al., 2007) produces a value of 0.51 which means that the geometry around the silver should be described as seesaw.

Experimental

The title compound was prepared by diffusion of pentane into a methanol solution of a mixture of 2-acetylpyridine and silver(I) tetrafluoridoborate.

Refinement

Hydrogen atoms were included in calculated positions as riding atoms, with Uiso(H) = 1.2Ueq(C) for the pyridine H atoms and Uiso(H) = 1.5Ueq(C) for the acetyl H atoms. The occupancies for the disordered F atoms of the BF4 anion were 0.568 (10)/0.432 (10) and were fixed at 0.57/0.43 in the refinement.

Figures

Fig. 1.
The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level.

Crystal data

[Ag(C7H7NO)2]BF4Z = 2
Mr = 436.95F(000) = 432
Triclinic, P1Dx = 1.836 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2635 (2) ÅCell parameters from 8378 reflections
b = 9.7091 (3) Åθ = 2.7–27.6°
c = 11.7390 (4) ŵ = 1.33 mm1
α = 85.624 (2)°T = 116 K
β = 81.452 (2)°Block, colourless
γ = 75.054 (2)°0.37 × 0.36 × 0.14 mm
V = 790.34 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3661 independent reflections
Radiation source: fine-focus sealed tube3255 reflections with I > 2σ(I)
graphiteRint = 0.042
[var phi] and ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −9→9
Tmin = 0.805, Tmax = 1.000k = −12→12
18086 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0251P)2] where P = (Fo2 + 2Fc2)/3
3661 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ag10.62372 (2)0.358455 (15)0.216889 (12)0.02670 (6)
N10.7431 (2)0.40200 (16)0.03743 (13)0.0200 (3)
C20.8515 (3)0.2955 (2)−0.02733 (17)0.0266 (4)
H20.85960.20010.00100.032*
C30.9529 (3)0.3180 (3)−0.13419 (18)0.0338 (5)
H31.02790.2398−0.17810.041*
C40.9425 (3)0.4558 (3)−0.17500 (17)0.0350 (5)
H41.01250.4742−0.24710.042*
C50.8291 (3)0.5676 (2)−0.10994 (16)0.0279 (5)
H50.81860.6635−0.13750.033*
C60.7311 (3)0.53789 (19)−0.00415 (15)0.0200 (4)
O70.5413 (2)0.62559 (14)0.16893 (11)0.0279 (3)
C70.6095 (3)0.65429 (19)0.07221 (16)0.0227 (4)
C80.5744 (3)0.8064 (2)0.0268 (2)0.0353 (5)
H8A0.48630.86860.08400.053*
H8B0.51750.8157−0.04490.053*
H8C0.69660.83400.01170.053*
N90.4948 (2)0.26845 (16)0.37767 (14)0.0238 (4)
C100.3564 (3)0.1997 (2)0.37892 (17)0.0281 (4)
H100.31170.19170.30820.034*
C110.2753 (3)0.1397 (2)0.47867 (18)0.0299 (5)
H110.17570.09330.47650.036*
C120.3420 (3)0.1486 (2)0.58052 (17)0.0299 (5)
H120.28990.10770.65000.036*
C130.4870 (3)0.2183 (2)0.58072 (16)0.0262 (4)
H130.53600.22500.65020.031*
C140.5589 (3)0.27780 (19)0.47815 (15)0.0211 (4)
O150.7480 (2)0.43100 (16)0.38824 (12)0.0414 (4)
C150.7082 (3)0.3619 (2)0.47483 (16)0.0235 (4)
C160.7981 (3)0.3629 (2)0.58006 (17)0.0327 (5)
H16A0.69930.40690.64200.049*
H16B0.89560.41770.56380.049*
H16C0.85870.26470.60400.049*
B250.9904 (3)0.9500 (2)0.7668 (2)0.0297 (5)
F261.1442 (2)0.96995 (15)0.81393 (12)0.0499 (4)
F271.0213 (7)0.8050 (5)0.7373 (6)0.0530 (14)0.568 (10)
F280.8389 (6)0.9732 (7)0.8535 (4)0.0778 (17)0.568 (10)
F290.9559 (8)1.0366 (5)0.6754 (4)0.0486 (13)0.568 (10)
F27'0.8174 (6)1.0520 (7)0.7916 (8)0.080 (3)0.432 (10)
F28'1.0393 (11)0.9638 (11)0.6459 (4)0.059 (2)0.432 (10)
F29'0.9705 (11)0.8213 (7)0.7954 (6)0.0507 (17)0.432 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.03524 (10)0.02888 (9)0.01804 (8)−0.01335 (7)−0.00432 (6)0.00624 (6)
N10.0188 (8)0.0235 (8)0.0192 (8)−0.0063 (7)−0.0057 (6)−0.0002 (6)
C20.0221 (11)0.0319 (11)0.0285 (10)−0.0069 (9)−0.0088 (8)−0.0063 (8)
C30.0235 (11)0.0533 (15)0.0262 (11)−0.0086 (10)−0.0028 (8)−0.0161 (10)
C40.0231 (11)0.0685 (16)0.0166 (10)−0.0177 (11)−0.0005 (8)−0.0047 (10)
C50.0226 (11)0.0441 (13)0.0214 (10)−0.0163 (9)−0.0076 (8)0.0088 (9)
C60.0176 (10)0.0269 (10)0.0183 (9)−0.0094 (8)−0.0073 (7)0.0039 (7)
O70.0334 (8)0.0262 (7)0.0217 (7)−0.0048 (6)−0.0011 (6)−0.0005 (6)
C70.0180 (10)0.0233 (10)0.0286 (10)−0.0070 (8)−0.0081 (8)0.0038 (8)
C80.0332 (13)0.0251 (11)0.0470 (14)−0.0087 (9)−0.0058 (10)0.0083 (9)
N90.0267 (9)0.0215 (8)0.0229 (8)−0.0064 (7)−0.0042 (7)0.0035 (6)
C100.0287 (12)0.0309 (11)0.0270 (10)−0.0101 (9)−0.0074 (8)0.0015 (8)
C110.0241 (11)0.0300 (11)0.0353 (12)−0.0102 (9)0.0027 (9)−0.0001 (9)
C120.0320 (12)0.0300 (11)0.0261 (11)−0.0109 (9)0.0063 (8)−0.0005 (8)
C130.0306 (12)0.0272 (10)0.0198 (10)−0.0072 (9)0.0008 (8)−0.0031 (8)
C140.0235 (10)0.0177 (9)0.0198 (9)−0.0026 (7)−0.0008 (7)0.0001 (7)
O150.0635 (11)0.0464 (10)0.0277 (8)−0.0383 (9)−0.0109 (7)0.0100 (7)
C150.0271 (11)0.0206 (9)0.0219 (10)−0.0050 (8)−0.0008 (8)−0.0030 (7)
C160.0323 (12)0.0444 (13)0.0245 (11)−0.0153 (10)−0.0037 (9)−0.0002 (9)
B250.0255 (13)0.0262 (12)0.0366 (13)−0.0086 (10)−0.0009 (10)0.0049 (10)
F260.0574 (10)0.0577 (9)0.0475 (9)−0.0335 (8)−0.0209 (7)0.0115 (7)
F270.040 (2)0.0249 (14)0.099 (4)−0.0053 (14)−0.028 (2)−0.003 (2)
F280.047 (2)0.097 (4)0.071 (3)−0.009 (2)0.0300 (17)0.005 (2)
F290.060 (3)0.043 (2)0.051 (2)−0.026 (2)−0.022 (2)0.0213 (17)
F27'0.043 (3)0.065 (4)0.118 (7)0.018 (2)−0.011 (3)−0.027 (4)
F28'0.065 (4)0.098 (6)0.031 (2)−0.053 (4)−0.006 (2)0.015 (3)
F29'0.063 (4)0.034 (3)0.067 (4)−0.030 (3)−0.022 (3)0.022 (3)

Geometric parameters (Å, °)

Ag1—N12.2088 (14)C10—C111.388 (3)
Ag1—N92.2018 (15)C10—H100.9500
Ag1—O72.5454 (13)C11—C121.372 (3)
Ag1—O152.5380 (15)C11—H110.9500
N1—C21.338 (2)C12—C131.391 (3)
N1—C61.357 (2)C12—H120.9500
C2—C31.389 (3)C13—C141.385 (2)
C2—H20.9500C13—H130.9500
C3—C41.373 (3)C14—C151.510 (3)
C3—H30.9500O15—C151.215 (2)
C4—C51.385 (3)C15—C161.482 (3)
C4—H40.9500C16—H16A0.9800
C5—C61.386 (2)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—C71.505 (3)B25—F29'1.307 (6)
O7—C71.212 (2)B25—F291.324 (4)
C7—C81.502 (2)B25—F281.368 (4)
C8—H8A0.9800B25—F261.380 (3)
C8—H8B0.9800B25—F27'1.393 (5)
C8—H8C0.9800B25—F28'1.415 (5)
N9—C101.340 (2)B25—F271.428 (5)
N9—C141.348 (2)
N9—Ag1—N1165.92 (6)N9—C10—C11123.05 (19)
N9—Ag1—O1570.09 (5)N9—C10—H10118.5
N1—Ag1—O15122.03 (5)C11—C10—H10118.5
N9—Ag1—O7121.62 (5)C12—C11—C10118.66 (19)
N1—Ag1—O769.62 (5)C12—C11—H11120.7
O15—Ag1—O783.23 (5)C10—C11—H11120.7
C2—N1—C6118.14 (16)C11—C12—C13119.11 (17)
C2—N1—Ag1120.49 (12)C11—C12—H12120.4
C6—N1—Ag1120.74 (13)C13—C12—H12120.4
N1—C2—C3122.97 (19)C14—C13—C12119.07 (19)
N1—C2—H2118.5C14—C13—H13120.5
C3—C2—H2118.5C12—C13—H13120.5
C4—C3—C2118.6 (2)N9—C14—C13122.03 (17)
C4—C3—H3120.7N9—C14—C15116.76 (15)
C2—C3—H3120.7C13—C14—C15121.16 (18)
C3—C4—C5119.31 (18)C15—O15—Ag1110.96 (13)
C3—C4—H4120.3O15—C15—C16121.06 (18)
C5—C4—H4120.3O15—C15—C14120.05 (18)
C4—C5—C6119.22 (19)C16—C15—C14118.84 (15)
C4—C5—H5120.4C15—C16—H16A109.5
C6—C5—H5120.4C15—C16—H16B109.5
N1—C6—C5121.73 (18)H16A—C16—H16B109.5
N1—C6—C7116.32 (15)C15—C16—H16C109.5
C5—C6—C7121.93 (17)H16A—C16—H16C109.5
C7—O7—Ag1112.42 (12)H16B—C16—H16C109.5
O7—C7—C8120.55 (19)F29—B25—F28112.6 (3)
O7—C7—C6120.42 (16)F29'—B25—F26109.0 (3)
C8—C7—C6119.04 (17)F29—B25—F26111.2 (2)
C7—C8—H8A109.5F28—B25—F26105.6 (3)
C7—C8—H8B109.5F29'—B25—F27'111.3 (4)
H8A—C8—H8B109.5F26—B25—F27'115.8 (3)
C7—C8—H8C109.5F29'—B25—F28'109.9 (4)
H8A—C8—H8C109.5F26—B25—F28'105.7 (3)
H8B—C8—H8C109.5F27'—B25—F28'104.8 (3)
C10—N9—C14118.07 (16)F29—B25—F27110.4 (3)
C10—N9—Ag1121.89 (13)F28—B25—F27105.7 (3)
C14—N9—Ag1120.00 (12)F26—B25—F27111.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2079).

References

  • Bowmaker, G. A., Effendy, Nitiatmodjo, M., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4327–4341.
  • Bruker (2009). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc.115, 9480–9497.
  • Di Nicola, C., Effendy, Marchetti, F., Nervi, C., Pettinari, C., Robinson, W. T., Sobolev, A. N. & White, A. H. (2010). Dalton Trans. pp. 908–922. [PubMed]
  • Drew, M. G. B., Naskar, J. P., Chowdhury, S. & Datta, D. (2005). Eur. J. Inorg. Chem. pp. 4834–4839.
  • Fitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886–4888. [PubMed]
  • Golder, R. K., Fitchett, C. M., Wikaira, J. L. & Steel, P. J. (2010). Acta Cryst. E66, m1324. [PMC free article] [PubMed]
  • O’Keefe, B. J. & Steel, P. J. (2007) CrystEngComm, 9, 222–227.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steel, P. J. (2005). Acc. Chem. Res.38, 243–250. [PubMed]
  • Steel, P. J. & Fitchett, C. M. (2008). Coord. Chem. Rev.205, 990–1006.
  • Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [PubMed]
  • Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev.252, 1346–1386.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography