PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1551–m1552.
Published online 2010 November 13. doi:  10.1107/S1600536810045435
PMCID: PMC3011756

Bis(2-hy­droxy­ethanaminium) tetra­chloridopalladate(II)

Abstract

In the title compound, (C2H8NO)2[PdCl4], 2-hy­droxy­ethanaminium cations and tetra­chloridopalladate(II) dianions crystallize in a 2:1 ratio with the anion residing on a crystallographic inversion center. The cations and anions are linked in a complex three-dimensional framework by three types of strong hydrogen bonds (N—H(...)O, N—H(...)Cl, and O—H(...)Cl), which form various ring and chain patterns of up to the ternary graph-set level.

Related literature

For the hydrolysis of imines in Schiff base first-row transition metal complexes, see: Chattopadhyay et al. (2007 [triangle]); Czaun et al. (2010 [triangle]); Guzei et al. (2010 [triangle]); Lee et al. (1948 [triangle]). For the use of Schiff base first-row transition metal complexes as amine protecting groups, see: Deng et al. (2002 [triangle]); Kurita (2001 [triangle]); Shelley et al. (1999 [triangle]). For geometrical parameter checks, see: Bruno et al. (2004 [triangle]). For R factor comparisons, see: Allen (2002 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1551-scheme1.jpg

Experimental

Crystal data

  • (C2H8NO)2[PdCl4]
  • M r = 372.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1551-efi1.jpg
  • a = 8.9401 (4) Å
  • b = 8.1621 (4) Å
  • c = 8.5921 (4) Å
  • β = 103.445 (2)°
  • V = 609.78 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.37 mm−1
  • T = 100 K
  • 0.30 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: analytical (SADABS; Bruker, 2001 [triangle]) T min = 0.536, T max = 0.871
  • 14744 measured reflections
  • 1851 independent reflections
  • 1769 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.012
  • wR(F 2) = 0.028
  • S = 0.98
  • 1851 reflections
  • 62 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL, OLEX2 (Dolomanov et al., 2009 [triangle]) and FCF_filter (Guzei 2007 [triangle]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2009 [triangle]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010 [triangle]) and modiCIFer (Guzei, 2007 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045435/nk2068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045435/nk2068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hydrolysis of imines in Schiff base first row transition metal complexes is now common (Chattopadhyay et al. 2007, Czaun et al., 2010; Guzei et al., 2010; Lee et al., 1948) These metal complexes have been used to protect amines by first converting them to imines followed by metal assisted hydrolysis back to the amine (Deng et al., 2002; Kurita, 2001; Shelley et al., 1999). However, hydrolysis of imines by second row transition metal complexes is very rare. In an attempt to use 2,4-di-tert-butyl-6-{(2-hydroxyethylimino)methyl}phenol to prepare a palladium complex, we isolated the ammonium chloride salt of tetrachloropalladate, [C2H8NO]2+[PdCl4]2-, a result of the hydrolysis of the imine ligand.

The ionic title compound (I) consists of bis(2-hydroxyethanaminium) cations and tetrachloro-palladium(II) dianions in a 2:1 ratio. The tetrachloro-palladium(II) dianion resides on a crystallographic inversion center. The geometrical parameters of (I) are typical as confirmed by a Mogul geometrical check (Bruno et al., 2004). Three types of hydrogen bonds, N1—H1A···O1,(a), N1—H1C···Cl2,(b), and O1—H1···Cl1,(c) form a three dimensional framework. The most easily visualized graph set motifs in the network include the primary ring pattern R22(10) a->a->, three different secondary patterns formed by bonds b and c, the chain C22(9) b c, the chain C44(18) bcc and the ring R44(18) bcbc, and the ternary chain pattern C33(8) acb (Bernstein et al., 1995).

The R-factor of the structural determination of (I) is a mere 1.18%. Data mining of the Cambridge Structural Database (Cambridge Structural Database, CSD, version 1.12, August 2010 update; Allen, 2002) found only 113 reported structural determinations with lower R-factors. This extremely low R-factor along with the unusually low standard uncertainties on the bond distances (fourth decimal place) and angles (third decimal place) are indicative of the high precision of this structure.

Experimental

A solution of [PdCl2(NCMe)2] (0.11 g, 0.429 mmol) in dichloromethane (5 ml) was added to a solution of 2,4-di-tert-butyl-6-[(2-hydroxy-ethylimino)methyl]-phenol (0.12 g, 0.429 mmol) in dichloromethane (5 ml). The mixture was stirred at room temperature for 16 h, filtered, and the filtrate evaporated to dryness. Recrystallization of the residue from dichloromethane-hexane gave brown crystals over several days. Yield: 0.10 g (58%).

Refinement

All H-atoms were placed in idealized locations with an O—H distance of 0.84 Å, N—H distances of 0.91 Å, and C—H distances of 0.99 Å. All H-atoms were refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.5 times Ueq(bearing atom) for the hydrogen atoms attached to oxygen atoms or 1.2 times Ueq(bearing atom) for all hydrogen atoms attached to nitrogen or carbon atoms.

Figures

Fig. 1.
Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. Hydrogen bonds are shown with dashed lines. Symmetry transformations used to generate equivalent atoms: (i) -x + 2,-y + 2,-z + 1.

Crystal data

(C2H8NO)2[PdCl4]F(000) = 368
Mr = 372.39Dx = 2.028 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9951 reflections
a = 8.9401 (4) Åθ = 3.4–30.6°
b = 8.1621 (4) ŵ = 2.37 mm1
c = 8.5921 (4) ÅT = 100 K
β = 103.445 (2)°Block, orange
V = 609.78 (5) Å30.30 × 0.10 × 0.06 mm
Z = 2

Data collection

Bruker SMART APEXII area-detector diffractometer1769 reflections with I > 2σ(I)
mirror opticsRint = 0.024
0.60° ω and 0.6° [var phi] scansθmax = 30.6°, θmin = 3.4°
Absorption correction: analytical (SADABS; Bruker, 2001)h = −12→12
Tmin = 0.536, Tmax = 0.871k = −11→11
14744 measured reflectionsl = −12→12
1851 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.028H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0111P)2 + 0.3119P] where P = (Fo2 + 2Fc2)/3
1851 reflections(Δ/σ)max = 0.001
62 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.50 e Å3

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd11.00001.00000.50000.00979 (3)
Cl10.73683 (3)0.96899 (3)0.46100 (3)0.01355 (5)
Cl21.04022 (3)0.81392 (3)0.70777 (3)0.01331 (5)
O10.57008 (9)0.31533 (9)0.44982 (9)0.01677 (15)
H10.61470.22450.45270.025*
N10.74116 (10)0.59194 (11)0.58009 (10)0.01328 (16)
H1A0.64910.64490.55700.016*
H1C0.81770.66500.61850.016*
H1B0.74040.51350.65520.016*
C10.62509 (12)0.42371 (14)0.34444 (12)0.01645 (19)
H1E0.54380.50410.29870.020*
H1D0.64870.36000.25510.020*
C20.76792 (13)0.51374 (13)0.43181 (13)0.01585 (19)
H2A0.85490.43590.46040.019*
H2B0.79510.59880.36100.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.00874 (5)0.00986 (5)0.01049 (5)0.00005 (3)0.00164 (3)−0.00051 (3)
Cl10.01008 (10)0.01379 (10)0.01650 (11)0.00018 (8)0.00250 (8)0.00104 (8)
Cl20.01270 (10)0.01301 (10)0.01342 (10)−0.00109 (8)0.00143 (8)0.00129 (7)
O10.0146 (3)0.0126 (3)0.0239 (4)0.0011 (3)0.0062 (3)0.0002 (3)
N10.0124 (4)0.0126 (4)0.0146 (4)−0.0007 (3)0.0028 (3)0.0006 (3)
C10.0148 (4)0.0202 (5)0.0141 (4)0.0002 (4)0.0029 (4)−0.0009 (4)
C20.0136 (4)0.0199 (5)0.0153 (4)−0.0011 (4)0.0059 (4)−0.0009 (4)

Geometric parameters (Å, °)

Pd1—Cl22.3074 (2)N1—H1B0.9100
Pd1—Cl12.3119 (3)C1—C21.5127 (15)
O1—C11.4322 (13)C1—H1E0.9900
O1—H10.8400C1—H1D0.9900
N1—C21.4932 (13)C2—H2A0.9900
N1—H1A0.9100C2—H2B0.9900
N1—H1C0.9100
Cl2i—Pd1—Cl189.409 (8)C2—C1—H1E109.4
Cl2—Pd1—Cl190.591 (9)O1—C1—H1D109.4
C1—O1—H1109.5C2—C1—H1D109.4
C2—N1—H1A109.5H1E—C1—H1D108.0
C2—N1—H1C109.5N1—C2—C1110.29 (8)
H1A—N1—H1C109.5N1—C2—H2A109.6
C2—N1—H1B109.5C1—C2—H2A109.6
H1A—N1—H1B109.5N1—C2—H2B109.6
H1C—N1—H1B109.5C1—C2—H2B109.6
O1—C1—C2111.14 (8)H2A—C2—H2B108.1
O1—C1—H1E109.4
O1—C1—C2—N1−51.28 (11)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.911.972.8370 (12)158
O1—H1···Cl1iii0.842.353.1869 (8)179
N1—H1C···Cl20.912.303.2048 (9)170

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2068).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [PubMed]
  • Chattopadhyay, S., Brew, M. D. G. & Gosh, A. (2007). Polyhedron, 26, 3513–3522.
  • Czaun, M., Nelana, S. M., Hasselgren, C., Jagner, S., Oskarsson, A., Lisensky, G., Darkwa, J. & Nordlander, E. (2010). Inorg. Chim. Acta, 363, 3002–3112.
  • Deng, W.-P., Wong, K. A. & Kirk, K. L. (2002). Tetrahedron Asymmetry, 13, 1135-1140.
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  • Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, modiCIFer Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Guzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010). Acta Cryst. C66, m89–m96. [PubMed]
  • Kurita, K. (2001). Prog. Polym. Sci.26, 1921–1971.
  • Lee, T. S., Kolthoff, I. M. & Leussing, D. L. (1948). J. Am. Chem. Soc.70, 3596–3600. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shelley, M. D., Hartley, L., Fish, R. G., Groundwater, P., Morgan, J. J. G., Mort, D., Mason, M. & Evans, A. (1999). Cancer Lett.135, 171–180. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography