PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3361.
Published online 2010 November 30. doi:  10.1107/S1600536810048889
PMCID: PMC3011752

N′-(3,5-Dibromo-2-hy­droxy­benzyl­idene)-2-methyl­benzohydrazide

Abstract

The asymmetric unit of the title compound, C15H12Br2N2O2, contains two independent mol­ecules in which the dihedral angles between the benzene rings are 49.5 (7) and 66.4 (7)°. Intra­molecular O—H(...)N hydrogen bonds generate S(6) ring motifs in each mol­ecule. In the crystal, mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming chains along the b axis.

Related literature

For general background to hydrazones, see: Rasras et al. (2010 [triangle]); Pyta et al. (2010 [triangle]); Angelusiu et al. (2010 [triangle]). For related structures, see: Fun et al. (2008 [triangle]); Singh & Singh (2010 [triangle]); Ahmad et al. (2010 [triangle]); Tang (2010 [triangle]). For reference bond-length data, see: Allen et al. (1987 [triangle]) and for hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3361-scheme1.jpg

Experimental

Crystal data

  • C15H12Br2N2O2
  • M r = 412.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3361-efi1.jpg
  • a = 18.636 (3) Å
  • b = 9.606 (2) Å
  • c = 19.943 (3) Å
  • β = 113.726 (2)°
  • V = 3268.4 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.97 mm−1
  • T = 298 K
  • 0.17 × 0.13 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.486, T max = 0.587
  • 17117 measured reflections
  • 6973 independent reflections
  • 2208 reflections with I > 2σ(I)
  • R int = 0.116

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.159
  • S = 0.89
  • 6973 reflections
  • 389 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810048889/sj5065sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048889/sj5065Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Jiaying University research fund is gratefully acknowledged.

supplementary crystallographic information

Comment

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the new title hydrazone compound (Fig. 1).

The asymmetric unit of the title compound contains two independent molecules. The dihedral angles between the two benzene rings in the two molecules are 49.5 (7) and 66.4 (7)°, respectively. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, N1—N2—C8—C9, C15—C21—N3—N4, C21—N3—N4—C22, and N3—N4—C22—C23 are 3.9 (6), 4.3 (6), 1.8 (6), 2.4 (6), 7.3 (6), and 2.4 (6)°, respectively. Bond lengths in the molecules are normal (Allen et al., 1987) and comparable to those in the similar compound the author reported recently (Tang, 2010). Intramolecular O1—H1···N1 and O3—H3···N3 hydrogen bonds generate S(6) ring motifs in each molecule (Bernstein et al., 1995). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the b axis (Fig. 2).

Experimental

3,5-Dibromo-2-hydroxybenzaldehyde (0.1 mmol, 28.0 mg) and 2-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless block-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement

The amino H atoms were located in a difference Fourier map and refined isotropically, with the N—H distances restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries and refined as riding, with Csp2—H = 0.93 Å, C(methyl)—H = 0.96 Å, and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Figures

Fig. 1.
The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
Molecular packing of the title compound, with hydrogen bonds shown as dashed lines.

Crystal data

C15H12Br2N2O2F(000) = 1616
Mr = 412.09Dx = 1.675 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1348 reflections
a = 18.636 (3) Åθ = 2.5–24.1°
b = 9.606 (2) ŵ = 4.97 mm1
c = 19.943 (3) ÅT = 298 K
β = 113.726 (2)°Block, colourless
V = 3268.4 (10) Å30.17 × 0.13 × 0.12 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer6973 independent reflections
Radiation source: fine-focus sealed tube2208 reflections with I > 2σ(I)
graphiteRint = 0.116
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→19
Tmin = 0.486, Tmax = 0.587k = −12→11
17117 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.89w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3
6973 reflections(Δ/σ)max < 0.001
389 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.69344 (6)0.40876 (10)0.38431 (6)0.0971 (4)
Br20.72350 (5)−0.17458 (10)0.37439 (6)0.0928 (4)
Br3−0.06953 (6)0.85420 (10)−0.01006 (5)0.0876 (4)
Br4−0.12081 (6)0.29585 (11)0.04659 (6)0.0984 (4)
N10.4069 (4)0.1700 (7)0.3119 (3)0.0615 (18)
N20.3301 (4)0.1455 (7)0.3007 (4)0.0614 (19)
N30.1898 (4)0.6601 (6)0.2214 (3)0.0576 (18)
N40.2608 (4)0.6440 (7)0.2795 (4)0.0605 (18)
O10.5235 (3)0.3360 (6)0.3345 (3)0.0757 (17)
H10.47750.31540.32400.114*
O20.3146 (3)0.3703 (6)0.3204 (3)0.0781 (18)
O30.0844 (3)0.8048 (6)0.1160 (3)0.0726 (16)
H30.12660.79070.15040.109*
O40.2768 (3)0.8762 (6)0.2838 (3)0.0822 (19)
C10.5314 (4)0.0854 (9)0.3282 (4)0.051 (2)
C20.5659 (5)0.2190 (9)0.3415 (4)0.057 (2)
C30.6469 (5)0.2318 (8)0.3630 (4)0.060 (2)
C40.6930 (5)0.1155 (10)0.3713 (4)0.067 (2)
H4A0.74670.12490.38510.081*
C50.6590 (5)−0.0157 (9)0.3591 (4)0.065 (2)
C60.5792 (5)−0.0284 (9)0.3376 (4)0.058 (2)
H60.5569−0.11680.32920.069*
C70.4486 (4)0.0642 (9)0.3118 (4)0.057 (2)
H70.4265−0.02420.30150.069*
C80.2854 (5)0.2545 (10)0.3053 (4)0.055 (2)
C90.2028 (5)0.2208 (9)0.2904 (5)0.061 (2)
C100.1668 (6)0.2838 (11)0.3318 (5)0.088 (3)
C110.0869 (7)0.2519 (13)0.3119 (7)0.109 (4)
H110.06070.29060.33840.131*
C120.0470 (7)0.1646 (14)0.2540 (7)0.111 (4)
H12−0.00590.14730.24170.133*
C130.0832 (6)0.1029 (9)0.2144 (6)0.089 (3)
H130.05610.04330.17570.107*
C140.1627 (5)0.1327 (9)0.2342 (5)0.073 (3)
H140.18880.09110.20830.087*
C150.0682 (4)0.5631 (8)0.1399 (4)0.048 (2)
C160.0418 (5)0.6869 (9)0.1003 (4)0.054 (2)
C17−0.0330 (5)0.6879 (9)0.0439 (4)0.059 (2)
C18−0.0814 (5)0.5726 (9)0.0281 (4)0.066 (2)
H18−0.13150.5755−0.00900.079*
C19−0.0538 (4)0.4536 (8)0.0683 (4)0.057 (2)
C200.0207 (4)0.4455 (9)0.1218 (4)0.056 (2)
H200.03940.36160.14580.067*
C210.1458 (4)0.5550 (8)0.1993 (4)0.051 (2)
H210.16360.46950.22170.061*
C220.3020 (5)0.7621 (9)0.3066 (4)0.051 (2)
C230.3807 (5)0.7368 (8)0.3682 (4)0.051 (2)
C240.4012 (5)0.8118 (9)0.4335 (5)0.065 (2)
C250.4759 (7)0.7929 (11)0.4871 (5)0.103 (3)
H250.49080.84050.53120.124*
C260.5285 (6)0.7049 (11)0.4762 (6)0.102 (3)
H260.57860.69520.51290.122*
C270.5087 (5)0.6310 (10)0.4121 (6)0.102 (3)
H270.54430.57100.40520.122*
C280.4339 (5)0.6489 (9)0.3583 (5)0.075 (3)
H280.41930.60030.31450.090*
C290.2102 (6)0.3762 (12)0.3981 (6)0.138 (5)
H29A0.25600.32860.43130.208*
H29B0.17630.39700.42260.208*
H29C0.22540.46130.38220.208*
C300.3438 (6)0.9038 (10)0.4487 (5)0.111 (4)
H30A0.33030.98190.41590.167*
H30B0.36730.93650.49830.167*
H30C0.29740.85160.44150.167*
H40.281 (4)0.559 (3)0.295 (4)0.080*
H20.309 (4)0.060 (3)0.291 (4)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0765 (7)0.0809 (7)0.1295 (9)−0.0250 (6)0.0369 (7)−0.0015 (7)
Br20.0685 (6)0.0922 (8)0.1017 (8)0.0176 (6)0.0175 (6)−0.0253 (6)
Br30.0767 (7)0.0865 (8)0.0826 (7)0.0029 (5)0.0143 (6)0.0252 (6)
Br40.0707 (7)0.0878 (8)0.1113 (8)−0.0274 (6)0.0101 (6)−0.0070 (6)
N10.051 (5)0.047 (4)0.067 (5)−0.004 (4)0.004 (4)0.006 (4)
N20.046 (5)0.045 (5)0.083 (5)−0.004 (4)0.015 (4)0.007 (4)
N30.051 (4)0.051 (4)0.059 (5)−0.013 (4)0.009 (4)−0.015 (4)
N40.040 (4)0.056 (5)0.065 (5)0.005 (4)0.000 (4)0.001 (4)
O10.049 (3)0.062 (4)0.104 (5)−0.003 (3)0.019 (4)0.015 (3)
O20.060 (4)0.057 (4)0.107 (5)0.006 (3)0.022 (4)−0.006 (4)
O30.060 (4)0.066 (4)0.073 (4)−0.019 (3)0.006 (3)0.006 (3)
O40.069 (4)0.047 (4)0.095 (5)−0.004 (3)−0.004 (4)0.012 (4)
C10.050 (5)0.054 (6)0.041 (5)−0.007 (5)0.009 (4)−0.006 (4)
C20.053 (6)0.064 (7)0.041 (5)−0.002 (5)0.005 (4)0.005 (5)
C30.060 (6)0.061 (6)0.049 (5)−0.013 (5)0.010 (5)−0.001 (4)
C40.053 (5)0.091 (8)0.055 (6)0.006 (6)0.018 (5)−0.007 (6)
C50.062 (6)0.073 (7)0.056 (6)0.010 (5)0.019 (5)−0.021 (5)
C60.050 (5)0.063 (6)0.050 (5)−0.003 (5)0.009 (4)−0.010 (5)
C70.042 (5)0.057 (6)0.061 (5)−0.006 (5)0.009 (4)0.001 (5)
C80.046 (6)0.053 (6)0.047 (5)−0.010 (5)0.000 (4)0.006 (5)
C90.048 (6)0.054 (6)0.075 (7)−0.011 (5)0.019 (5)0.001 (5)
C100.087 (8)0.112 (9)0.071 (7)−0.003 (7)0.038 (7)0.017 (6)
C110.085 (9)0.168 (12)0.096 (9)0.009 (8)0.058 (8)0.026 (9)
C120.074 (8)0.164 (13)0.101 (10)−0.006 (8)0.042 (8)0.051 (9)
C130.073 (8)0.080 (7)0.105 (8)−0.008 (6)0.026 (7)0.028 (6)
C140.048 (6)0.066 (7)0.101 (8)0.005 (5)0.027 (6)0.017 (6)
C150.055 (5)0.040 (5)0.046 (5)0.006 (4)0.019 (4)−0.001 (4)
C160.051 (5)0.060 (6)0.054 (6)−0.010 (5)0.024 (5)−0.017 (5)
C170.046 (5)0.074 (6)0.049 (5)0.009 (5)0.011 (5)0.018 (5)
C180.052 (5)0.082 (7)0.060 (6)−0.019 (6)0.018 (5)−0.007 (5)
C190.050 (5)0.050 (6)0.057 (6)−0.004 (4)0.007 (5)−0.002 (5)
C200.044 (5)0.064 (6)0.046 (5)0.000 (5)0.004 (4)−0.010 (4)
C210.046 (5)0.061 (6)0.034 (5)0.007 (4)0.003 (4)−0.009 (4)
C220.049 (5)0.056 (6)0.046 (5)−0.018 (5)0.016 (5)−0.009 (5)
C230.052 (5)0.049 (5)0.049 (6)−0.008 (4)0.017 (5)−0.005 (4)
C240.067 (6)0.073 (6)0.049 (6)−0.002 (5)0.017 (5)−0.004 (5)
C250.104 (9)0.116 (9)0.055 (7)0.005 (8)−0.004 (7)−0.018 (6)
C260.074 (8)0.101 (9)0.093 (9)−0.013 (7)−0.007 (7)−0.013 (7)
C270.058 (7)0.092 (8)0.114 (9)0.006 (6)−0.008 (6)−0.028 (7)
C280.058 (6)0.078 (7)0.070 (6)−0.004 (5)0.005 (6)−0.003 (5)
C290.124 (10)0.209 (14)0.103 (9)−0.013 (9)0.067 (8)−0.035 (9)
C300.121 (8)0.144 (10)0.078 (7)0.008 (8)0.049 (7)−0.012 (7)

Geometric parameters (Å, °)

Br1—C31.878 (8)C11—H110.9300
Br2—C51.890 (8)C12—C131.364 (13)
Br3—C171.894 (7)C12—H120.9300
Br4—C191.900 (8)C13—C141.402 (11)
N1—C71.280 (8)C13—H130.9300
N1—N21.377 (8)C14—H140.9300
N2—C81.364 (10)C15—C201.391 (9)
N2—H20.898 (10)C15—C161.402 (10)
N3—C211.263 (8)C15—C211.457 (9)
N3—N41.372 (8)C16—C171.396 (10)
N4—C221.355 (9)C17—C181.382 (10)
N4—H40.898 (10)C18—C191.371 (10)
O1—C21.348 (8)C18—H180.9300
O1—H10.8200C19—C201.370 (9)
O2—C81.221 (8)C20—H200.9300
O3—C161.345 (8)C21—H210.9300
O3—H30.8200C22—C231.507 (10)
O4—C221.207 (8)C23—C281.375 (10)
C1—C61.375 (9)C23—C241.400 (10)
C1—C21.412 (10)C24—C251.384 (11)
C1—C71.457 (9)C24—C301.508 (11)
C2—C31.399 (10)C25—C261.378 (12)
C3—C41.377 (10)C25—H250.9300
C4—C51.387 (10)C26—C271.376 (12)
C4—H4A0.9300C26—H260.9300
C5—C61.378 (9)C27—C281.386 (11)
C6—H60.9300C27—H270.9300
C7—H70.9300C28—H280.9300
C8—C91.481 (10)C29—H29A0.9600
C9—C141.363 (10)C29—H29B0.9600
C9—C101.396 (11)C29—H29C0.9600
C10—C111.411 (13)C30—H30A0.9600
C10—C291.526 (12)C30—H30B0.9600
C11—C121.377 (14)C30—H30C0.9600
C7—N1—N2117.1 (6)C20—C15—C21119.2 (7)
C8—N2—N1118.7 (6)C16—C15—C21120.8 (7)
C8—N2—H2119 (5)O3—C16—C17119.1 (8)
N1—N2—H2122 (5)O3—C16—C15122.9 (7)
C21—N3—N4118.3 (7)C17—C16—C15118.0 (8)
C22—N4—N3116.2 (6)C18—C17—C16121.8 (8)
C22—N4—H4122 (5)C18—C17—Br3119.6 (6)
N3—N4—H4122 (5)C16—C17—Br3118.6 (7)
C2—O1—H1109.5C19—C18—C17118.5 (7)
C16—O3—H3109.5C19—C18—H18120.8
C6—C1—C2118.4 (7)C17—C18—H18120.8
C6—C1—C7119.3 (8)C20—C19—C18121.8 (7)
C2—C1—C7122.1 (8)C20—C19—Br4119.9 (7)
O1—C2—C3118.3 (8)C18—C19—Br4118.3 (6)
O1—C2—C1122.3 (7)C19—C20—C15119.7 (7)
C3—C2—C1119.4 (8)C19—C20—H20120.2
C4—C3—C2120.6 (8)C15—C20—H20120.2
C4—C3—Br1119.9 (7)N3—C21—C15122.2 (7)
C2—C3—Br1119.5 (7)N3—C21—H21118.9
C3—C4—C5119.8 (8)C15—C21—H21118.9
C3—C4—H4A120.1O4—C22—N4122.5 (8)
C5—C4—H4A120.1O4—C22—C23123.9 (7)
C6—C5—C4119.6 (8)N4—C22—C23113.6 (8)
C6—C5—Br2121.0 (7)C28—C23—C24120.5 (8)
C4—C5—Br2119.3 (7)C28—C23—C22120.2 (7)
C1—C6—C5122.1 (8)C24—C23—C22119.1 (8)
C1—C6—H6119.0C25—C24—C23117.6 (9)
C5—C6—H6119.0C25—C24—C30119.7 (9)
N1—C7—C1118.5 (7)C23—C24—C30122.6 (8)
N1—C7—H7120.8C26—C25—C24121.2 (9)
C1—C7—H7120.8C26—C25—H25119.4
O2—C8—N2119.5 (7)C24—C25—H25119.4
O2—C8—C9124.9 (9)C27—C26—C25121.4 (10)
N2—C8—C9115.6 (8)C27—C26—H26119.3
C14—C9—C10121.4 (8)C25—C26—H26119.3
C14—C9—C8118.9 (9)C26—C27—C28117.7 (9)
C10—C9—C8119.7 (9)C26—C27—H27121.1
C9—C10—C11116.3 (10)C28—C27—H27121.1
C9—C10—C29123.5 (10)C23—C28—C27121.6 (9)
C11—C10—C29120.1 (11)C23—C28—H28119.2
C12—C11—C10121.4 (11)C27—C28—H28119.2
C12—C11—H11119.3C10—C29—H29A109.5
C10—C11—H11119.3C10—C29—H29B109.5
C13—C12—C11121.6 (11)H29A—C29—H29B109.5
C13—C12—H12119.2C10—C29—H29C109.5
C11—C12—H12119.2H29A—C29—H29C109.5
C12—C13—C14117.5 (10)H29B—C29—H29C109.5
C12—C13—H13121.2C24—C30—H30A109.5
C14—C13—H13121.2C24—C30—H30B109.5
C9—C14—C13121.7 (9)H30A—C30—H30B109.5
C9—C14—H14119.1C24—C30—H30C109.5
C13—C14—H14119.1H30A—C30—H30C109.5
C20—C15—C16120.0 (7)H30B—C30—H30C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.90 (1)1.85 (2)2.743 (8)172 (7)
N4—H4···O20.90 (1)1.92 (2)2.815 (8)174 (7)
O3—H3···N30.821.902.624 (8)146
O1—H1···N10.821.872.584 (8)145

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5065).

References

  • Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976. [PMC free article] [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem.45, 2055–2062. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. [PMC free article] [PubMed]
  • Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct.970, 147–154.
  • Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem.45, 2307–2313. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172. [PMC free article] [PubMed]
  • Tang, C.-B. (2010). Acta Cryst. E66, o2482. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography