PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1625.
Published online 2010 November 24. doi:  10.1107/S1600536810047501
PMCID: PMC3011750

1-Cyano­methyl-1,4-diazo­niabicyclo­[2.2.2]octane tetra­chloridocuprate(II)

Abstract

In the crystal structure of the title compound, (C8H15N3)[CuCl4], the cations and anions, in which the CuII atom is tetra­hedrally coordinated, are linked via N—H(...)Cl hydrogen bonds into chains that are elongated in the c-axis direction.

Related literature

For a similar structure, see: Wen et al. (2004 [triangle]). For our ongoing investigations of DABCO derivatives, see: Chen et al. (2010 [triangle]); Zhang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1625-scheme1.jpg

Experimental

Crystal data

  • (C8H15N3)[CuCl4]
  • M r = 358.57
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1625-efi1.jpg
  • a = 8.2714 (6) Å
  • b = 13.6585 (8) Å
  • c = 12.1636 (10) Å
  • β = 96.501 (5)°
  • V = 1365.35 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.36 mm−1
  • T = 293 K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.641, T max = 1.000
  • 14635 measured reflections
  • 3123 independent reflections
  • 2307 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.118
  • S = 1.09
  • 3123 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 1.00 e Å−3
  • Δρmin = −1.00 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047501/nc2197sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047501/nc2197Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Only a few crystal structures containing the 1-(cyanomethyl)-4-aza-1-azonia-bicyclo-[2.2.2]octane [C8H15N3[+ cation have been determined. In our ongoing investigations in the field of DABCO derivative some of which may be ferroelectrics (Zhang et al., 2009; Chen et al. 2010) the title compound was prepared and characterized by single-crystal X-ray diffraction.

The asymmetric unit of the title compound contains one [C8H15N3[+ cation and one [CuCl4]2- anion in general positions (Fig. 1). The Cu atoms are coordinated by four Cl atoms with distances in the range of 2.246 (2) to 2.308 (6) Å. The Cl—Cu—Cl bond angles are between 99.01 (5) and 126.10 (5)° which shows that the coordination polyhedron can be described as a strongly distorted tetrahedron. The structure of the [CuCl4]2- anion is close to those observed in similar complexes, like in (C10H10N2S)[CuCl4] (Wen et al., 2004). The organic cations and the complex anions are linked by N—H···Cl hydrogen-bonding interactions (Fig. 2 and Tab. 1). The N—H H atom attached to N1 interacts two Cl atoms of one [CuCl4]2- anion and one Cl atom of a further adjacent [CuCl4]2- anion with N1—H1C···Cl1, N1—H1C···Cl2 and N1—H1C···Cl3i distances of 2.70, 2.80 and 2.58Å, respectively [symmetry codes: (i) x, -y + 1/2, z + 1/2].

Experimental

Bromoacetonitrile (0.1 mol, 12.00 g) was added to a CH3CN (25 ml) solution of 1,4-Diaza-bicyclo[2.2.2]octane (DABCO) (0.05 mol, 5.6 g) with stirring for 1 h at room temperature. 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide quickly formed as white solid was filtered, washed with acetonitrile and dried (yield: 80%). CuCl2.2H2O (0.001 mol, 0.171 g) and 2 ml 36% HCl were dissolved in MeOH (20 ml) and 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide (0.002 mol, 0.464 g) in H2O (20 ml) was added. The resulting solution was stirred until a clear solution was obtained. After slow evaporation of the solvent, red-brown block crystals of the title compound suitable for X-ray analysis were obtained in about 60% yield.

Refinement

The C—H H atoms were positioned with idealized geometry and refined using a riding model (Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The asymmetric unit of compound (I) with labelling and displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Crystal structure of the title compound with view along the a axis. C—H H atoms have been omitted for clarity. Intermolecular N—-H···Cl interactions are shown as dashed lines.

Crystal data

(C8H15N3)[CuCl4]F(000) = 724
Mr = 358.57Dx = 1.744 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3825 reflections
a = 8.2714 (6) Åθ = 2.5–27.5°
b = 13.6585 (8) ŵ = 2.36 mm1
c = 12.1636 (10) ÅT = 293 K
β = 96.501 (5)°Block, red-brown
V = 1365.35 (17) Å30.2 × 0.2 × 0.2 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer3123 independent reflections
Radiation source: fine-focus sealed tube2307 reflections with I > 2σ(I)
graphiteRint = 0.055
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −17→17
Tmin = 0.641, Tmax = 1.000l = −15→15
14635 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118w = 1/[σ2(Fo2) + (0.0585P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3123 reflectionsΔρmax = 1.00 e Å3
145 parametersΔρmin = −1.00 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0055 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.72905 (6)0.23247 (4)−0.01548 (4)0.02929 (17)
Cl20.51578 (11)0.14877 (7)0.04825 (7)0.0260 (2)
Cl30.74393 (12)0.25165 (8)−0.19747 (8)0.0354 (3)
Cl40.95764 (12)0.14720 (8)0.03958 (8)0.0352 (3)
Cl10.67871 (13)0.38977 (7)0.02896 (9)0.0358 (3)
N10.3987 (4)0.3497 (2)0.1903 (3)0.0289 (7)
H1C0.49470.31620.17880.035*
C8−0.0796 (5)0.5439 (3)0.2033 (3)0.0309 (9)
C30.3247 (5)0.2807 (3)0.2658 (3)0.0314 (9)
H3A0.39440.27500.33520.038*
H3B0.31310.21630.23220.038*
N20.1337 (3)0.4183 (2)0.2368 (2)0.0230 (7)
C10.2879 (5)0.3613 (3)0.0877 (3)0.0338 (9)
H1A0.26380.29780.05430.041*
H1B0.33940.40120.03560.041*
C7−0.0253 (5)0.4565 (3)0.2655 (3)0.0321 (9)
H7A−0.10710.40580.25140.039*
H7B−0.01530.47150.34400.039*
C50.4289 (5)0.4464 (3)0.2451 (4)0.0372 (10)
H5A0.47010.49230.19400.045*
H5B0.50970.43970.30890.045*
N3−0.1269 (5)0.6094 (3)0.1516 (3)0.0440 (10)
C20.1332 (5)0.4093 (4)0.1134 (3)0.0405 (11)
H2A0.04050.37050.08300.049*
H2B0.12370.47370.07980.049*
C60.2706 (5)0.4844 (3)0.2810 (4)0.0479 (12)
H6A0.27830.48650.36110.057*
H6B0.25010.55030.25310.057*
C40.1615 (5)0.3192 (3)0.2863 (4)0.0451 (12)
H4A0.07740.27490.25440.054*
H4B0.15520.32260.36540.054*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0302 (3)0.0303 (3)0.0276 (3)0.0024 (2)0.0041 (2)0.0008 (2)
Cl20.0255 (4)0.0261 (4)0.0266 (5)0.0000 (4)0.0044 (4)0.0034 (4)
Cl30.0337 (5)0.0479 (6)0.0246 (5)0.0038 (4)0.0025 (4)0.0020 (4)
Cl40.0341 (5)0.0433 (6)0.0286 (5)0.0146 (4)0.0050 (4)0.0086 (4)
Cl10.0400 (6)0.0261 (5)0.0434 (6)−0.0009 (4)0.0143 (5)−0.0009 (4)
N10.0214 (16)0.0337 (18)0.0318 (18)0.0053 (14)0.0048 (14)0.0047 (15)
C80.029 (2)0.030 (2)0.033 (2)0.0022 (17)0.0030 (17)−0.0057 (18)
C30.027 (2)0.033 (2)0.035 (2)0.0029 (17)0.0051 (17)0.0107 (18)
N20.0223 (15)0.0210 (15)0.0255 (17)−0.0001 (12)0.0015 (12)0.0021 (13)
C10.034 (2)0.044 (3)0.023 (2)0.0066 (18)0.0025 (17)0.0013 (18)
C70.030 (2)0.032 (2)0.036 (2)0.0047 (17)0.0113 (17)−0.0007 (18)
C50.030 (2)0.038 (2)0.043 (3)−0.0091 (18)0.0040 (19)−0.002 (2)
N30.052 (2)0.032 (2)0.045 (2)0.0094 (17)−0.0071 (19)−0.0073 (18)
C20.037 (2)0.059 (3)0.025 (2)0.011 (2)0.0003 (18)−0.004 (2)
C60.034 (2)0.038 (3)0.068 (3)−0.0033 (19)−0.010 (2)−0.017 (2)
C40.046 (3)0.034 (2)0.059 (3)0.013 (2)0.024 (2)0.024 (2)

Geometric parameters (Å, °)

Cu1—Cl32.2463 (11)N2—C21.506 (5)
Cu1—Cl42.2568 (10)C1—C21.502 (5)
Cu1—Cl12.2655 (11)C1—H1A0.9700
Cu1—Cl22.3085 (10)C1—H1B0.9700
N1—C11.471 (5)C7—H7A0.9700
N1—C51.488 (5)C7—H7B0.9700
N1—C31.495 (5)C5—C61.518 (6)
N1—H1C0.9405C5—H5A0.9700
C8—N31.137 (5)C5—H5B0.9700
C8—C71.458 (6)C2—H2A0.9700
C3—C41.496 (5)C2—H2B0.9700
C3—H3A0.9700C6—H6A0.9700
C3—H3B0.9700C6—H6B0.9700
N2—C41.488 (5)C4—H4A0.9700
N2—C71.492 (4)C4—H4B0.9700
N2—C61.499 (5)
Cl3—Cu1—Cl4102.42 (4)C8—C7—N2113.1 (3)
Cl3—Cu1—Cl199.01 (4)C8—C7—H7A109.0
Cl4—Cu1—Cl1126.09 (5)N2—C7—H7A109.0
Cl3—Cu1—Cl2121.19 (4)C8—C7—H7B109.0
Cl4—Cu1—Cl2106.93 (4)N2—C7—H7B109.0
Cl1—Cu1—Cl2102.79 (4)H7A—C7—H7B107.8
C1—N1—C5110.0 (3)N1—C5—C6109.0 (3)
C1—N1—C3109.3 (3)N1—C5—H5A109.9
C5—N1—C3110.2 (3)C6—C5—H5A109.9
C1—N1—H1C112.4N1—C5—H5B109.9
C5—N1—H1C113.4C6—C5—H5B109.9
C3—N1—H1C101.2H5A—C5—H5B108.3
N3—C8—C7176.8 (4)C1—C2—N2109.7 (3)
N1—C3—C4108.7 (3)C1—C2—H2A109.7
N1—C3—H3A110.0N2—C2—H2A109.7
C4—C3—H3A110.0C1—C2—H2B109.7
N1—C3—H3B110.0N2—C2—H2B109.7
C4—C3—H3B110.0H2A—C2—H2B108.2
H3A—C3—H3B108.3N2—C6—C5109.4 (3)
C4—N2—C7108.9 (3)N2—C6—H6A109.8
C4—N2—C6109.1 (3)C5—C6—H6A109.8
C7—N2—C6110.8 (3)N2—C6—H6B109.8
C4—N2—C2108.2 (3)C5—C6—H6B109.8
C7—N2—C2111.0 (3)H6A—C6—H6B108.2
C6—N2—C2108.8 (3)N2—C4—C3110.7 (3)
N1—C1—C2109.5 (3)N2—C4—H4A109.5
N1—C1—H1A109.8C3—C4—H4A109.5
C2—C1—H1A109.8N2—C4—H4B109.5
N1—C1—H1B109.8C3—C4—H4B109.5
C2—C1—H1B109.8H4A—C4—H4B108.1
H1A—C1—H1B108.2

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl3i0.942.583.325 (3)136
N1—H1C···Cl10.942.703.247 (3)118
N1—H1C···Cl20.942.803.441 (3)126

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2197).

References

  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Chen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct.963, 16–21.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wen, Y.-H., Cheng, J.-K., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m618–m619. [PubMed]
  • Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. D. (2009). J. Am. Chem. Soc.131, 12544–12545. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography