PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3090.
Published online 2010 November 6. doi:  10.1107/S1600536810044697
PMCID: PMC3011746

4-Allyl-3-(2-methyl-4-quinol­yl)-1H-1,2,4-triazole-5(4H)-thione

Abstract

In the title compound, C15H14N4S, the quinoline and triazole rings form a dihedral angle of 41.48 (7)°. In the crystal, adjacent mol­ecules are linked by N—H(...)N hydrogen bonds, forming chains along [100].

Related literature

For the use of hydrazides and their functional derivatives in the preparation of a series of anti­tubercular and anti­bacterial compounds, see: Anghel & Silberg (1971 [triangle]); Figueiredo et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3090-scheme1.jpg

Experimental

Crystal data

  • C15H14N4S
  • M r = 282.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3090-efi1.jpg
  • a = 7.8184 (8) Å
  • b = 11.5159 (13) Å
  • c = 15.7723 (14) Å
  • β = 96.034 (9)°
  • V = 1412.2 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 1.99 mm−1
  • T = 295 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 2897 measured reflections
  • 2897 independent reflections
  • 2570 reflections with I > 2σ(I)
  • 1 standard reflections every 60 min intensity decay: 4%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.171
  • S = 1.09
  • 2897 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044697/ng5047sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044697/ng5047Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database.

supplementary crystallographic information

Comment

Hydrazides and their functional derivatives were used to prepare a series of antitubercular and antibacterial compounds (Anghel & Silberg, 1971; Figueiredo et al., 2000). Many heterocyclic compounds directly prepared from hydrazides, too, possess valuable biological and physicochemical properties. This causes an attention to new synthetic methods and investigation of similar compounds. N–(Allylthiocarbonyl)–4–(2–methyl–4–quinolyl)–carbohydrazide, I, was synthesized from allyl isothiocyanate and hydrazide 2–methyl–4–quinoline carboxylic acid. When heated with alkali for 1 h, the product undergoes cyclization into 4-allyl-3-(2-methyl-4-quinolyl)-4,5-dihydro-1H-1,2,4-triazole-5-thione, II (Fig. 1).

In title molecule, guinoline moiety is planar (max deviation of C6 = 0.039 (2) Å) and assential planar triazole moiety form dihedral angle 41.48 (7)° (Fig. 2). In the crystal structure is found classical hydrogen bond N14—H14···N1i with parameters N14—H14 = 0.86 Å, N14···N1i = 2.978 (3) Å, H14···N1i = 2.21Å and angle N14—H14···N1i = 147.8°. Non–classical H bond is found too: C21—H21A···N15ii with parameters C21—H21A = 0.96 Å, C21···N15ii = 3.330 (3) Å, H21A···N15ii = 2.450Å and angle C21—H21A···N15ii = 152°. Is found σ···π–interaction between H8—>C17iii═C18iii (H8···C17iii = 2.800Å and H8···C18iii = 2.896 Å). Symmetry codes: (i) x + 1/2, -y + 3/2, z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2; (iii) x, y - 1, z.

Experimental

A solution of 1.43 mmol of NaOH in 10 ml of water was added to 0.95 mmol of N–(allylthiocarbonyl)–4–(2–methyl–4–quinolyl)–carbohydrazide, and the mixture was refluxed for 1 h. The solution was cooled and acidified with acetic acid to pH 4. The precipitate that formed was filtered off and recrystallized from ethanol. Recrystallization of the crude product from ethanol gave 0.2 g of colourless crystals. Yield 73%, m.p. 494–495 K.

IR, ν, cm-1: 3432 (NH), 3324 (NH), 1348 (C═S). MS, m/z: 282 (100) [M]+, 245 (39), 267 (62), 169 (66), 168 (61), 140 (23). 1H NMR, δ: 2.68 s (3H, CH3), 3.92 s (1H, NH), 4.53 d (2H, J = 5.04, —CH2—CH═CH2), 4.67 d (1H, J = 10.53, —CH═CH2trans), 5.17 dd (1H, J = 16.94, —CH═CH2cis), 5.62 m (1H, —CH═), 7.55 t (1H, J = 7.34, 7–H), 7.66 s (1H, 3–H), 7.76 t (1H, J = 7.74, 6–H), 7.78 d (1H, J = 8.24, 8–H), 8.00 d (1H, J = 8.70, 5–H). Anal. calc. for C15H14N4S, %: C 63.80; H 5.00; N 19.84; S 11.36. Found, %: C 63.68; H 5.09; N 11.44; S 11.31.

Single crystals for X–ray analysis were obtained by slow evaporation of an ethanol. IR spectrum was recorded (in KBr) on Shimadzu FTIR–8400S. Mass spectrum was measured on Finnigan Trance DSQ spectrometer. 1H NMR spectrum was obtained in DMSO–d6 on Bruker AM 300 (300 MHz), using TMS as internal standard. Elemental composition was determined on Euro Vector EA–3000 elemental analyzer.

Refinement

C– or N–bound H–atoms were placed in calculated positions (C—H 0.93–0.97Å and N—H 0.86 Å) and refined as riding, with Uiso(H) = 1.2(1.5)Ueq(C, N).

Figures

Fig. 1.
Synthesis of the title compound.
Fig. 2.
ORTEP–3 (Farrugia, 1997) plot of molecular structure of the title compound showing the atom–numbering scheme. Thermal displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary ...

Crystal data

C15H14N4SF(000) = 592
Mr = 282.37Dx = 1.328 Mg m3
Monoclinic, P21/nMelting point = 494–495 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 7.8184 (8) ÅCell parameters from 25 reflections
b = 11.5159 (13) Åθ = 29.9–32.4°
c = 15.7723 (14) ŵ = 1.99 mm1
β = 96.034 (9)°T = 295 K
V = 1412.2 (3) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.0000
Radiation source: Fine–focus sealed tubeθmax = 74.9°, θmin = 4.8°
Graphiteh = −9→9
non–profiled ω scansk = 0→14
2897 measured reflectionsl = 0→19
2897 independent reflections1 standard reflections every 60 min
2570 reflections with I > 2σ(I) intensity decay: 4%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0953P)2 + 0.6742P] where P = (Fo2 + 2Fc2)/3
2897 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.60 e Å3

Special details

Geometry. All s.u.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.0256 (3)0.68265 (17)0.64417 (12)0.0489 (4)
C20.0117 (3)0.7945 (2)0.64169 (14)0.0510 (5)
C21−0.0078 (5)0.8565 (2)0.55821 (17)0.0707 (8)
H21A−0.03270.80140.51290.106*
H21B0.09710.89670.55050.106*
H21C−0.10020.91150.55750.106*
C30.0741 (3)0.8566 (2)0.71541 (14)0.0504 (5)
H30.10530.93400.71050.060*
C40.0898 (3)0.80569 (19)0.79389 (13)0.0450 (5)
C50.0448 (3)0.6859 (2)0.79967 (13)0.0452 (5)
C60.0506 (4)0.6230 (2)0.87675 (16)0.0572 (6)
H60.08090.66050.92840.069*
C70.0115 (4)0.5067 (2)0.87563 (18)0.0677 (7)
H70.01610.46560.92660.081*
C8−0.0351 (4)0.4498 (2)0.79841 (18)0.0636 (7)
H8−0.06010.37080.79860.076*
C9−0.0446 (3)0.5078 (2)0.72313 (15)0.0521 (5)
H9−0.07570.46850.67230.063*
C10−0.0073 (3)0.62756 (19)0.72191 (14)0.0445 (5)
C110.1589 (3)0.87239 (19)0.86904 (13)0.0438 (5)
N120.1212 (2)0.98612 (16)0.88595 (11)0.0426 (4)
C130.2140 (3)1.0161 (2)0.96191 (13)0.0461 (5)
S130.20807 (9)1.14068 (5)1.01518 (4)0.0584 (2)
N140.3062 (3)0.91993 (18)0.98323 (11)0.0509 (5)
H140.37920.91531.02790.061*
N150.2733 (3)0.83085 (18)0.92762 (12)0.0512 (5)
C16−0.0166 (3)1.0582 (2)0.84356 (15)0.0479 (5)
H16A−0.06861.10250.88640.057*
H16B−0.10451.00800.81540.057*
C170.0426 (3)1.1402 (2)0.77948 (17)0.0544 (6)
H170.14301.18190.79460.065*
C18−0.0369 (4)1.1571 (3)0.70368 (19)0.0670 (7)
H18A−0.13771.11670.68650.080*
H18B0.00701.20960.66670.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0549 (11)0.0500 (10)0.0402 (9)0.0018 (8)−0.0018 (8)−0.0032 (8)
C20.0626 (14)0.0476 (12)0.0413 (11)0.0030 (10)−0.0012 (9)−0.0011 (9)
C210.109 (2)0.0540 (15)0.0459 (13)−0.0009 (14)−0.0077 (14)0.0031 (11)
C30.0633 (14)0.0436 (12)0.0431 (12)0.0006 (10)−0.0004 (10)−0.0017 (9)
C40.0485 (11)0.0460 (11)0.0398 (11)0.0019 (9)0.0016 (8)−0.0034 (9)
C50.0489 (11)0.0448 (11)0.0413 (11)0.0035 (9)0.0025 (8)−0.0019 (9)
C60.0772 (17)0.0522 (13)0.0417 (12)−0.0016 (12)0.0037 (11)0.0006 (10)
C70.099 (2)0.0514 (14)0.0521 (14)−0.0034 (14)0.0051 (13)0.0072 (11)
C80.0819 (19)0.0430 (12)0.0656 (16)−0.0012 (12)0.0059 (13)−0.0003 (11)
C90.0570 (13)0.0467 (12)0.0517 (13)0.0013 (10)0.0017 (10)−0.0068 (10)
C100.0457 (11)0.0454 (11)0.0421 (11)0.0032 (9)0.0027 (8)−0.0024 (8)
C110.0487 (11)0.0439 (11)0.0384 (10)0.0003 (9)0.0022 (8)−0.0025 (8)
N120.0456 (9)0.0429 (9)0.0392 (9)−0.0006 (7)0.0045 (7)−0.0013 (7)
C130.0497 (11)0.0497 (12)0.0394 (10)−0.0056 (9)0.0070 (8)−0.0023 (9)
S130.0753 (5)0.0485 (4)0.0524 (4)−0.0073 (3)0.0107 (3)−0.0104 (2)
N140.0568 (11)0.0537 (11)0.0402 (9)0.0034 (9)−0.0039 (8)−0.0066 (8)
N150.0582 (11)0.0496 (10)0.0436 (10)0.0068 (9)−0.0044 (8)−0.0062 (8)
C160.0475 (11)0.0469 (12)0.0498 (12)0.0049 (9)0.0071 (9)0.0032 (9)
C170.0574 (13)0.0440 (12)0.0626 (14)−0.0004 (10)0.0106 (11)0.0053 (10)
C180.0805 (19)0.0596 (15)0.0617 (16)0.0015 (13)0.0115 (13)0.0118 (12)

Geometric parameters (Å, °)

N1—C21.322 (3)C8—H80.9300
N1—C101.375 (3)C9—C101.411 (3)
C2—C31.408 (3)C9—H90.9300
C2—C211.492 (3)C11—N151.307 (3)
C21—H21A0.9600C11—N121.375 (3)
C21—H21B0.9600N12—C131.377 (3)
C21—H21C0.9600N12—C161.465 (3)
C3—C41.363 (3)C13—N141.345 (3)
C3—H30.9300C13—S131.666 (2)
C4—C51.430 (3)N14—N151.357 (3)
C4—C111.467 (3)N14—H140.8600
C5—C61.411 (3)C16—C171.491 (3)
C5—C101.420 (3)C16—H16A0.9700
C6—C71.374 (4)C16—H16B0.9700
C6—H60.9300C17—C181.303 (4)
C7—C81.397 (4)C17—H170.9300
C7—H70.9300C18—H18A0.9300
C8—C91.357 (4)C18—H18B0.9300
C2—N1—C10118.25 (19)C10—C9—H9120.0
N1—C2—C3121.9 (2)N1—C10—C9117.5 (2)
N1—C2—C21119.4 (2)N1—C10—C5123.1 (2)
C3—C2—C21118.7 (2)C9—C10—C5119.4 (2)
C2—C21—H21A109.5N15—C11—N12110.86 (19)
C2—C21—H21B109.5N15—C11—C4123.1 (2)
H21A—C21—H21B109.5N12—C11—C4125.98 (19)
C2—C21—H21C109.5C11—N12—C13107.68 (18)
H21A—C21—H21C109.5C11—N12—C16127.87 (18)
H21B—C21—H21C109.5C13—N12—C16123.32 (19)
C4—C3—C2121.5 (2)N14—C13—N12103.32 (19)
C4—C3—H3119.3N14—C13—S13128.73 (17)
C2—C3—H3119.3N12—C13—S13127.93 (18)
C3—C4—C5118.3 (2)C13—N14—N15113.62 (18)
C3—C4—C11119.9 (2)C13—N14—H14123.2
C5—C4—C11121.75 (19)N15—N14—H14123.2
C6—C5—C10118.8 (2)C11—N15—N14104.45 (19)
C6—C5—C4124.3 (2)N12—C16—C17113.73 (19)
C10—C5—C4116.8 (2)N12—C16—H16A108.8
C7—C6—C5120.1 (2)C17—C16—H16A108.8
C7—C6—H6119.9N12—C16—H16B108.8
C5—C6—H6119.9C17—C16—H16B108.8
C6—C7—C8120.4 (2)H16A—C16—H16B107.7
C6—C7—H7119.8C18—C17—C16124.4 (3)
C8—C7—H7119.8C18—C17—H17117.8
C9—C8—C7121.1 (2)C16—C17—H17117.8
C9—C8—H8119.4C17—C18—H18A120.0
C7—C8—H8119.4C17—C18—H18B120.0
C8—C9—C10120.0 (2)H18A—C18—H18B120.0
C8—C9—H9120.0
C10—N1—C2—C32.0 (4)C4—C5—C10—C9176.7 (2)
C10—N1—C2—C21−179.7 (2)C3—C4—C11—N15−135.3 (3)
N1—C2—C3—C4−3.8 (4)C5—C4—C11—N1541.9 (3)
C21—C2—C3—C4178.0 (3)C3—C4—C11—N1241.3 (3)
C2—C3—C4—C51.4 (4)C5—C4—C11—N12−141.6 (2)
C2—C3—C4—C11178.6 (2)N15—C11—N12—C13−2.3 (3)
C3—C4—C5—C6−178.3 (2)C4—C11—N12—C13−179.2 (2)
C11—C4—C5—C64.5 (4)N15—C11—N12—C16−170.3 (2)
C3—C4—C5—C102.3 (3)C4—C11—N12—C1612.7 (4)
C11—C4—C5—C10−174.9 (2)C11—N12—C13—N142.6 (2)
C10—C5—C6—C72.0 (4)C16—N12—C13—N14171.29 (19)
C4—C5—C6—C7−177.3 (3)C11—N12—C13—S13−175.96 (17)
C5—C6—C7—C8−0.3 (5)C16—N12—C13—S13−7.2 (3)
C6—C7—C8—C9−0.7 (5)N12—C13—N14—N15−2.2 (3)
C7—C8—C9—C10−0.1 (4)S13—C13—N14—N15176.36 (17)
C2—N1—C10—C9−178.8 (2)N12—C11—N15—N140.9 (3)
C2—N1—C10—C52.0 (3)C4—C11—N15—N14178.0 (2)
C8—C9—C10—N1−177.5 (2)C13—N14—N15—C110.8 (3)
C8—C9—C10—C51.8 (4)C11—N12—C16—C17−100.9 (3)
C6—C5—C10—N1176.5 (2)C13—N12—C16—C1792.8 (3)
C4—C5—C10—N1−4.1 (3)N12—C16—C17—C18134.9 (3)
C6—C5—C10—C9−2.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N14—H14···N1i0.862.212.978 (3)148

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5047).

References

  • Anghel, C. & Silberg, A. (1971). Studia Univ. Babes–Bolyai Chem.16, 9–12.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Figueiredo, J. M., Camara, C. de A., Amarante, E. G., Miranda, A. L. P., Santos, F. M., Rodrigues, C. R., Fraga, C. A. M. & Barreiro, E. J. (2000). Bioorg. Med. Chem.8, 2243–2248. [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography