PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3368.
Published online 2010 November 30. doi:  10.1107/S1600536810049524
PMCID: PMC3011739

3,9-Di-tert-butyl-2,4,8,10-tetra­oxaspiro­[5.5]undeca­ne

Abstract

The title compound, C15H28O4, was prepared by the condensation of pivalaldehyde with penta­erythritol. In the crystal, the two halves of the mol­ecule are related by a crystallographic twofold rotation axis passing through the central spiro-C atom. The two non-planar six-membered heterocycles both adopt chair conformations with the two tert-butyl groups both located in the equatorial positions.

Related literature

For general background to spiranes, see: Cismaş et al. (2005 [triangle]); Mihiş et al. (2008 [triangle]); Sun et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3368-scheme1.jpg

Experimental

Crystal data

  • C15H28O4
  • M r = 272.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3368-efi2.jpg
  • a = 26.726 (4) Å
  • b = 5.7894 (8) Å
  • c = 11.2635 (15) Å
  • β = 113.846 (4)°
  • V = 1594.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 295 K
  • 0.35 × 0.32 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.972, T max = 0.988
  • 4400 measured reflections
  • 1513 independent reflections
  • 1347 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.145
  • S = 1.03
  • 1513 reflections
  • 90 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810049524/si2313sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810049524/si2313Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from the Natural Science Foundation of China (No. 20872051).

supplementary crystallographic information

Comment

Owing to the characteristic axial and helical chirality, the stereochemistry of spiranes with six-membered rings has been extensively studied (Cismaş et al., 2005). In the past three decades, most of these investigations were carried out with spiranes containing 1,3-dioxane units (Mihiş et al., 2008; Sun et al., 2010). We herein present the structure of 3,9-di(tert-butyl)-2,4,8,10-tetraoxaspiro[5.5]undecane (Fig. 1).

In the title compound, a 2-fold rotation axis passes through the central spiro-C atom (C1). The two non-planar sixmembered heterocycle [(O1/O2/C1–C4) and (O1A/O2A/C1/C2A–C4A)] both adopt chair conformations. The two tert-butyl groups locate at the equatorial position of C3 and C3A in the two six-member O-heterocycles, respectively, which give the title molecule with minimum conformational energy.

Experimental

To a solution of pivaldehyde (7.3 mmol,0.63 g) and pentaerythritol (4 mmol, 0.54 g) in toluene (30 ml), phosphotungstic acid (30 mg) was added as catalyst. The mixtures were refluxed for 6 h to complete the reaction. After reaction, the solvent was evaporated under vacuum and the resulting solid was washed with 5% sodium bicarbonate (20 ml) and 50% ethanol (20 ml). The pure product recrystallized from ethanol to afford a white solid (65% yield, m.p. 451–452 K). Single crystals suitable for X-ray diffraction were also obtained by evaporation of an ethanol solution.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.96–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: -x, y, -z + 1/2].

Crystal data

C15H28O4F(000) = 600
Mr = 272.37Dx = 1.135 Mg m3
Monoclinic, C2/cMelting point = 451–452 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 26.726 (4) ÅCell parameters from 3133 reflections
b = 5.7894 (8) Åθ = 3.1–25.8°
c = 11.2635 (15) ŵ = 0.08 mm1
β = 113.846 (4)°T = 295 K
V = 1594.0 (4) Å3Block, colorless
Z = 40.35 × 0.32 × 0.15 mm

Data collection

Bruker APEXII CCD diffractometer1513 independent reflections
Radiation source: fine-focus sealed tube1347 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 25.8°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −26→32
Tmin = 0.972, Tmax = 0.988k = −6→7
4400 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.1P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3
1513 reflections(Δ/σ)max < 0.001
90 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.00000.5543 (3)0.25000.0352 (4)
C20.03372 (5)0.4010 (2)0.36479 (11)0.0457 (4)
H2A0.00940.32010.39530.055*
H2B0.05310.28650.33660.055*
C30.10728 (4)0.66075 (19)0.42765 (10)0.0374 (3)
H30.12610.55440.39180.045*
C40.03957 (4)0.7056 (2)0.21734 (10)0.0387 (3)
H4A0.05980.61050.18110.046*
H4B0.01910.81920.15270.046*
C50.14972 (5)0.7871 (2)0.54331 (11)0.0433 (3)
C60.12174 (6)0.9403 (3)0.60883 (13)0.0582 (4)
H6A0.09871.05050.54730.087*
H6B0.14901.02040.68050.087*
H6C0.10000.84620.63980.087*
C70.18565 (6)0.6080 (3)0.64011 (15)0.0683 (5)
H7A0.16340.51320.66920.102*
H7B0.21280.68550.71310.102*
H7C0.20340.51300.59880.102*
C80.18477 (6)0.9364 (3)0.49431 (15)0.0643 (4)
H8A0.19810.84360.44270.096*
H8B0.21520.99850.56700.096*
H8C0.16301.06070.44260.096*
O10.07228 (3)0.53230 (14)0.46900 (7)0.0424 (3)
O20.07695 (3)0.82062 (13)0.33090 (7)0.0382 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0386 (8)0.0345 (8)0.0284 (8)0.0000.0094 (6)0.000
C20.0484 (7)0.0370 (6)0.0406 (7)−0.0019 (5)0.0065 (6)0.0047 (5)
C30.0360 (6)0.0408 (6)0.0326 (6)0.0058 (4)0.0111 (5)0.0006 (4)
C40.0391 (6)0.0486 (7)0.0266 (5)−0.0005 (5)0.0114 (5)−0.0003 (4)
C50.0410 (6)0.0457 (7)0.0337 (6)0.0034 (5)0.0052 (5)−0.0004 (5)
C60.0714 (9)0.0581 (8)0.0399 (7)0.0047 (7)0.0173 (6)−0.0101 (6)
C70.0557 (8)0.0646 (9)0.0557 (8)0.0097 (7)−0.0074 (7)0.0053 (7)
C80.0473 (7)0.0774 (11)0.0579 (9)−0.0140 (7)0.0107 (6)−0.0029 (7)
O10.0457 (5)0.0433 (5)0.0310 (5)−0.0019 (3)0.0081 (4)0.0060 (3)
O20.0382 (5)0.0424 (5)0.0296 (5)−0.0031 (3)0.0090 (4)0.0028 (3)

Geometric parameters (Å, °)

C1—C2i1.5261 (14)C4—H4B0.9700
C1—C21.5261 (14)C5—C61.5288 (18)
C1—C4i1.5281 (14)C5—C71.5293 (17)
C1—C41.5282 (14)C5—C81.5322 (19)
C2—O11.4281 (14)C6—H6A0.9600
C2—H2A0.9700C6—H6B0.9600
C2—H2B0.9700C6—H6C0.9600
C3—O21.4096 (12)C7—H7A0.9600
C3—O11.4132 (13)C7—H7B0.9600
C3—C51.5244 (15)C7—H7C0.9600
C3—H30.9800C8—H8A0.9600
C4—O21.4299 (13)C8—H8B0.9600
C4—H4A0.9700C8—H8C0.9600
C2i—C1—C2108.90 (12)C3—C5—C7108.66 (10)
C2i—C1—C4i107.94 (6)C6—C5—C7109.75 (11)
C2—C1—C4i111.00 (7)C3—C5—C8108.36 (10)
C2i—C1—C4111.00 (7)C6—C5—C8109.63 (11)
C2—C1—C4107.94 (6)C7—C5—C8109.89 (11)
C4i—C1—C4110.06 (13)C5—C6—H6A109.5
O1—C2—C1111.69 (9)C5—C6—H6B109.5
O1—C2—H2A109.3H6A—C6—H6B109.5
C1—C2—H2A109.3C5—C6—H6C109.5
O1—C2—H2B109.3H6A—C6—H6C109.5
C1—C2—H2B109.3H6B—C6—H6C109.5
H2A—C2—H2B107.9C5—C7—H7A109.5
O2—C3—O1110.49 (8)C5—C7—H7B109.5
O2—C3—C5110.02 (9)H7A—C7—H7B109.5
O1—C3—C5109.50 (8)C5—C7—H7C109.5
O2—C3—H3108.9H7A—C7—H7C109.5
O1—C3—H3108.9H7B—C7—H7C109.5
C5—C3—H3108.9C5—C8—H8A109.5
O2—C4—C1110.67 (7)C5—C8—H8B109.5
O2—C4—H4A109.5H8A—C8—H8B109.5
C1—C4—H4A109.5C5—C8—H8C109.5
O2—C4—H4B109.5H8A—C8—H8C109.5
C1—C4—H4B109.5H8B—C8—H8C109.5
H4A—C4—H4B108.1C3—O1—C2111.29 (8)
C3—C5—C6110.53 (10)C3—O2—C4111.17 (8)
C2i—C1—C2—O1171.24 (12)O1—C3—C5—C764.11 (12)
C4i—C1—C2—O1−70.06 (12)O2—C3—C5—C8−54.91 (12)
C4—C1—C2—O150.64 (12)O1—C3—C5—C8−176.52 (10)
C2i—C1—C4—O2−170.67 (8)O2—C3—O1—C261.88 (11)
C2—C1—C4—O2−51.39 (12)C5—C3—O1—C2−176.78 (9)
C4i—C1—C4—O269.89 (7)C1—C2—O1—C3−56.61 (11)
O2—C3—C5—C665.24 (12)O1—C3—O2—C4−63.27 (10)
O1—C3—C5—C6−56.37 (13)C5—C3—O2—C4175.71 (8)
O2—C3—C5—C7−174.28 (10)C1—C4—O2—C358.78 (11)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2313).

References

  • Bruker (2000). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem.9, 1287–1314.
  • Mihiş, A., Condamine, E., Bogdan, E., Terec, A., Kurtán, T. & Grosu, I. (2008). Molecules, 13, 2848–2858. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct.973, 152–156.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography