PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3279–o3280.
Published online 2010 November 24. doi:  10.1107/S160053681004780X
PMCID: PMC3011734

(2R,3S)-Methyl 2-hy­droxy-3-(4-methyl­benzene­sulfonamido)-3-phenyl­propano­ate

Abstract

In the title mol­ecule, C17H19NO5S, the p-tolyl ring is oriented approximately parallel to the phenyl ring [dihedral angle = 17.2 (1)°], resulting in an intra­molecular π–π inter­ation [centroid–centroid distance = 3.184 (10) Å]. In the crystal, mol­ecules are linked through O—H(...)O and C—H(...)O hydrogen bonds, forming hydrogen-bonded sheets lying diagonally across the ac face.

Related literature

For related structures of β-amino alcohols, see: Bergmeier (2000 [triangle]); Krzeminski & Wojtczak (2005 [triangle]). For related structures of tosyl­amino compounds, see: Coote et al. (2008 [triangle]); Liu et al. (2005 [triangle]); Chinnakali et al. (2007 [triangle]); Nan & Xing (2006 [triangle]); Fadlalla et al. (2010 [triangle]); Zhao et al. (2005 [triangle]). For the synthesis of the title compound, see: Naicker et al. (2008 [triangle]); Govender et al. (2003 [triangle]). For the use of β-amino alcohols in the synthesis of chiral ligands for asymmetric catalysis, see: Bodkin & McLeod (2002 [triangle]); Lohray et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3279-scheme1.jpg

Experimental

Crystal data

  • C17H19NO5S
  • M r = 349.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3279-efi1.jpg
  • a = 10.4053 (8) Å
  • b = 5.4655 (4) Å
  • c = 29.3768 (19) Å
  • β = 105.386 (3)°
  • V = 1610.8 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 100 K
  • 0.13 × 0.11 × 0.09 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.971, T max = 0.980
  • 17784 measured reflections
  • 4016 independent reflections
  • 3212 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.04
  • wR(F 2) = 0.100
  • S = 1.00
  • 4016 reflections
  • 219 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]), ORTEP-3 (Farrugia, 1999 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004780X/fl2324sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004780X/fl2324Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation and the University of KwaZulu-Natal is gratefully acknowledged.

supplementary crystallographic information

Comment

Vicinal amino alcohols (beta-amino alcohol) are a common structural component in many naturally occuring and biologically active compounds. Furthermore, beta-amino alcohols are used in the synthesis of chiral ligands for asymmetric catalysis (Lohray et al., 2002, Bodkin & McLeod, 2002). As part of investigating a new synthetic route to these molecules, we report the crystal structure of the title compound (I) (Fig. 1) whose synthesis produces diastereomers which are separable using chromatography with the stable one being the one with the chirality as R at C3 and S at C4.

The molecular structure of the title compound, C17H19NO5S (I), is similar to that of trans-methyl 2-hydroxy-3-(p-fluoro)phenyl-3'- (N-tosyl amino)propanoate (Zhao et al., 2005). The crystal structure is characterized by a number of intra- and inter- molecular interactions. An O-H···O and three C-H···O hydrogen bonds (Table 1) stabilize the crystal structure forming hydrogen bonded sheets that run along the b axis. In addition the p-tolyl and phenyl rings are in close proximity leading to a π–π interaction (Cg1···Cg2 = 3.8149 (10) Å) (Fig. 2). The hydrogen bonded sheets of molecules are alligned along the crystallographic ac face (Fig 3). It is worth mentioning that the H on the N atom does not contribute to a hydrogen bond as their is no acceptor in close proximity.

Experimental

The title compound was obtained through a modified literature method (Naicker et al., 2008, Govender et al., 2003). To a nitrogen saturated Schlenk tube 6 ml of a mixture of acetonitrile and water (1:1 v/v), methyl cinnamate (0.0775 g, 0.478 mmol), chloramine-T (0.2173 g, 0.956 mmol), hydrotalcite-like catalyst (0.03 g) were added in that order. The catalyst was gravity filtered off after 24 h. The reaction mixture was then washed with sodium sulfite (1 g in 20 ml of de-ionized water) followed by 15 ml of ethyl acetate. The aqueous layer was separated from the organic layer and further washed by 3x 15 ml of ethyl acetate. The solvent of the combined organic mixture was removed in vacuo. The resulting crude product was purified by preparative high preasure liquid chromatography to yield the title compound, (I), as a white solid. Crystals of I were obtained by slow evaporation of a solution of acetonitrile and water (1:1 v/v) at room temperature (m.p. 413–418 K). Spectroscopic data: 1H NMR (400 MHz, CDCl3, δ. p.p.m.): = 2.3 (s, 3H), 3.3 (d, 1H), 3.7 (s, 3H), 4.3 (d, 1H), 4.8 (dd, 1H), 5.6 (d, 1H), 7.0–7.1 (m, Ar), 7.5 (m, Ar). 13C NMR (400 MHz, CDCl3, δ. p.p.m.): =21.4 (s, 1 C), 53.2 (s, 1 C), 58.9 (s, 1 C), 74.2 (s, 1 C), 126.8 (s, 2 C), 126.9 (s, 2 C), 127.8 (s, 2 C), 128.4 (s, 2 C), 129.2 (s, 1 C), 137.4 (s, 1 C), 137.5 (s, 1 C), 143.1 (s, 1 C), 172.4 (s, 1 C). MS m/z-[fragment]-(%): 372.1 (M + Na+) calculated = 372.1 for C17H19NO5SNa+. FT—IR (cm1): = 3477(m), (OH), 3139(m), (NH), 2967(w), 2882(w), 1598(w), (ar), 1738(m), (C=O), 1056(m), (S=O).

Refinement

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH3, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for CH. N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N) for N—H and O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
View of (I) (50% probability displacement ellipsoids) with H atoms presented as small spheres of arbitrary radii.
Fig. 2.
O—H···O and C—H···O hydrogen bond interactions in the crystal structure of (I). [Symmetry operators: (i) = x, 1 + y, z; (ii) = 1 - x, 1 - y, 2 - z]
Fig. 3.
Sheets of O—H···O and C—H···O hydrogen bonded molecules alligned diagonally across the ac face.

Crystal data

C17H19NO5SF(000) = 736
Mr = 349.39Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18868 reflections
a = 10.4053 (8) Åθ = 2.0–28.4°
b = 5.4655 (4) ŵ = 0.23 mm1
c = 29.3768 (19) ÅT = 100 K
β = 105.386 (3)°Block, colourless
V = 1610.8 (2) Å30.13 × 0.11 × 0.09 mm
Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer3212 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −13→13
Tmin = 0.971, Tmax = 0.980k = −4→7
17784 measured reflectionsl = −39→39
4016 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.04Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0409P)2 + 1.5018P] where P = (Fo2 + 2Fc2)/3
4016 reflections(Δ/σ)max = 0.034
219 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.65 e Å3

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex 4 K CCD diffractometer using an exposure time of 15 sec/per frame. A total of 1480 frames were collected with a frame width of 0.5° covering upto θ = 28.41° with 99.8% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. >>> The Following Model and Quality ALERTS were generated - (Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 960_ALERT_3_G Number of Intensities with I. LT. - 2*sig(I).. 1 793_ALERT_4_G The Model has Chirality at C3 (Verify) ···. R 793_ALERT_4_G The Model has Chirality at C4 (Verify) ···. S The chirality is verified and correct.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.60326 (17)0.1396 (3)1.05597 (6)0.0179 (3)
H1A0.62890.24041.08450.027*
H1B0.6083−0.03371.06480.027*
H1C0.51180.17981.03830.027*
C20.70299 (16)0.4237 (3)1.01583 (6)0.0151 (3)
C30.80464 (16)0.4702 (3)0.98772 (6)0.0154 (3)
H30.89470.41821.00710.018*
C40.77208 (15)0.3308 (3)0.94058 (6)0.0140 (3)
H40.76720.15260.94760.017*
C50.88195 (16)0.3659 (3)0.91578 (6)0.0144 (3)
C60.88826 (16)0.5749 (3)0.88948 (6)0.0166 (3)
H60.82290.69930.88680.02*
C70.98912 (17)0.6037 (3)0.86702 (6)0.0203 (4)
H70.9920.74620.84880.024*
C81.08600 (17)0.4233 (3)0.87122 (6)0.0216 (4)
H81.15550.44290.85610.026*
C91.08063 (17)0.2154 (3)0.89751 (6)0.0212 (4)
H91.14670.09210.90040.025*
C100.97868 (16)0.1857 (3)0.91979 (6)0.0175 (3)
H100.97540.04230.93770.021*
C110.62837 (16)0.3006 (3)0.82070 (6)0.0149 (3)
C120.59763 (16)0.5127 (3)0.79368 (6)0.0160 (3)
H120.5360.6280.79980.019*
C130.65878 (16)0.5527 (3)0.75750 (6)0.0175 (3)
H130.63810.69650.73880.021*
C140.74982 (17)0.3851 (3)0.74828 (6)0.0188 (4)
C150.8146 (2)0.4311 (4)0.70873 (7)0.0325 (5)
H15A0.89620.33360.7140.049*
H15B0.83670.60520.7080.049*
H15C0.75290.38460.67860.049*
C160.77809 (17)0.1746 (3)0.77556 (6)0.0201 (4)
H160.83930.05850.76940.024*
C170.71818 (17)0.1312 (3)0.81180 (6)0.0178 (3)
H170.7385−0.01310.83030.021*
N10.63870 (13)0.4102 (3)0.91306 (5)0.0153 (3)
H10.60360.54460.92110.018*
O10.64240 (12)0.5874 (2)1.02804 (4)0.0191 (3)
O20.69409 (12)0.1881 (2)1.02642 (4)0.0170 (3)
O30.80780 (12)0.7244 (2)0.97843 (4)0.0196 (3)
H3A0.77040.80130.99610.029*
O40.57588 (13)−0.0023 (2)0.88103 (4)0.0214 (3)
O50.42425 (12)0.3532 (3)0.85460 (4)0.0235 (3)
S10.55584 (4)0.25129 (8)0.867939 (14)0.01596 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0213 (8)0.0183 (8)0.0179 (8)0.0000 (6)0.0115 (7)0.0030 (7)
C20.0173 (7)0.0162 (8)0.0101 (7)−0.0019 (6)0.0009 (6)0.0002 (6)
C30.0193 (8)0.0137 (8)0.0133 (7)−0.0030 (6)0.0043 (6)0.0013 (6)
C40.0158 (7)0.0133 (8)0.0130 (7)−0.0006 (6)0.0040 (6)0.0016 (6)
C50.0155 (7)0.0151 (8)0.0124 (7)−0.0020 (6)0.0032 (6)−0.0023 (6)
C60.0189 (8)0.0153 (8)0.0164 (8)0.0017 (6)0.0062 (6)0.0005 (7)
C70.0243 (9)0.0187 (9)0.0203 (9)−0.0039 (7)0.0104 (7)0.0005 (7)
C80.0176 (8)0.0262 (10)0.0230 (9)−0.0031 (7)0.0086 (7)−0.0063 (8)
C90.0165 (8)0.0225 (9)0.0231 (9)0.0034 (7)0.0030 (7)−0.0044 (7)
C100.0188 (8)0.0153 (8)0.0168 (8)0.0005 (6)0.0020 (6)0.0000 (7)
C110.0161 (7)0.0180 (8)0.0114 (7)−0.0035 (6)0.0048 (6)−0.0021 (6)
C120.0161 (7)0.0159 (8)0.0158 (8)0.0016 (6)0.0041 (6)−0.0017 (7)
C130.0196 (8)0.0166 (8)0.0148 (8)−0.0006 (6)0.0019 (6)0.0031 (7)
C140.0215 (8)0.0216 (9)0.0147 (8)−0.0012 (7)0.0073 (6)0.0000 (7)
C150.0410 (11)0.0362 (12)0.0271 (10)0.0073 (9)0.0212 (9)0.0076 (9)
C160.0223 (8)0.0191 (9)0.0210 (9)0.0046 (7)0.0096 (7)−0.0007 (7)
C170.0226 (8)0.0144 (8)0.0166 (8)0.0014 (6)0.0055 (7)0.0013 (7)
N10.0153 (6)0.0183 (7)0.0128 (6)0.0006 (5)0.0048 (5)−0.0032 (6)
O10.0237 (6)0.0152 (6)0.0191 (6)0.0006 (5)0.0066 (5)−0.0009 (5)
O20.0226 (6)0.0144 (6)0.0171 (6)0.0010 (5)0.0108 (5)0.0032 (5)
O30.0314 (7)0.0125 (6)0.0168 (6)−0.0041 (5)0.0097 (5)−0.0001 (5)
O40.0298 (7)0.0189 (6)0.0175 (6)−0.0092 (5)0.0101 (5)−0.0015 (5)
O50.0158 (6)0.0371 (8)0.0180 (6)−0.0018 (5)0.0052 (5)−0.0040 (6)
S10.01589 (19)0.0203 (2)0.01270 (19)−0.00410 (15)0.00551 (14)−0.00200 (16)

Geometric parameters (Å, °)

C1—O21.4671 (19)C9—H90.95
C1—H1A0.98C10—H100.95
C1—H1B0.98C11—C171.389 (2)
C1—H1C0.98C11—C121.393 (2)
C2—O11.203 (2)C11—S11.7675 (16)
C2—O21.334 (2)C12—C131.393 (2)
C2—C31.526 (2)C12—H120.95
C3—O31.418 (2)C13—C141.395 (2)
C3—C41.537 (2)C13—H130.95
C3—H31C14—C161.388 (3)
C4—N11.474 (2)C14—C151.511 (2)
C4—C51.522 (2)C15—H15A0.98
C4—H41C15—H15B0.98
C5—C61.390 (2)C15—H15C0.98
C5—C101.390 (2)C16—C171.390 (2)
C6—C71.389 (2)C16—H160.95
C6—H60.95C17—H170.95
C7—C81.392 (3)N1—S11.6274 (14)
C7—H70.95N1—H10.88
C8—C91.383 (3)O3—H3A0.8401
C8—H80.95O4—S11.4387 (14)
C9—C101.396 (2)O5—S11.4333 (13)
O2—C1—H1A109.5C9—C10—H10120
O2—C1—H1B109.5C5—C10—H10120
H1A—C1—H1B109.5C17—C11—C12120.78 (15)
O2—C1—H1C109.5C17—C11—S1119.66 (13)
H1A—C1—H1C109.5C12—C11—S1119.54 (13)
H1B—C1—H1C109.5C13—C12—C11118.88 (15)
O1—C2—O2125.07 (15)C13—C12—H12120.6
O1—C2—C3122.04 (15)C11—C12—H12120.6
O2—C2—C3112.85 (14)C12—C13—C14121.06 (16)
O3—C3—C2108.80 (13)C12—C13—H13119.5
O3—C3—C4108.86 (13)C14—C13—H13119.5
C2—C3—C4112.70 (13)C16—C14—C13118.88 (16)
O3—C3—H3108.8C16—C14—C15120.84 (16)
C2—C3—H3108.8C13—C14—C15120.28 (17)
C4—C3—H3108.8C14—C15—H15A109.5
N1—C4—C5114.69 (13)C14—C15—H15B109.5
N1—C4—C3107.37 (13)H15A—C15—H15B109.5
C5—C4—C3110.77 (13)C14—C15—H15C109.5
N1—C4—H4107.9H15A—C15—H15C109.5
C5—C4—H4107.9H15B—C15—H15C109.5
C3—C4—H4107.9C17—C16—C14120.95 (16)
C6—C5—C10119.27 (15)C17—C16—H16119.5
C6—C5—C4121.45 (14)C14—C16—H16119.5
C10—C5—C4119.28 (15)C16—C17—C11119.45 (16)
C7—C6—C5120.67 (16)C16—C17—H17120.3
C7—C6—H6119.7C11—C17—H17120.3
C5—C6—H6119.7C4—N1—S1120.52 (11)
C6—C7—C8119.90 (17)C4—N1—H1119.8
C6—C7—H7120.1S1—N1—H1119.7
C8—C7—H7120.1C2—O2—C1114.07 (13)
C9—C8—C7119.72 (16)C3—O3—H3A109.5
C9—C8—H8120.1O5—S1—O4120.52 (8)
C7—C8—H8120.1O5—S1—N1106.05 (8)
C8—C9—C10120.35 (16)O4—S1—N1106.78 (8)
C8—C9—H9119.8O5—S1—C11107.57 (8)
C10—C9—H9119.8O4—S1—C11107.16 (8)
C9—C10—C5120.09 (16)N1—S1—C11108.29 (8)
O1—C2—C3—O3−2.1 (2)C11—C12—C13—C14−0.3 (3)
O2—C2—C3—O3−179.60 (13)C12—C13—C14—C160.6 (3)
O1—C2—C3—C4−122.90 (17)C12—C13—C14—C15179.70 (17)
O2—C2—C3—C459.56 (18)C13—C14—C16—C17−0.6 (3)
O3—C3—C4—N1−61.99 (16)C15—C14—C16—C17−179.69 (18)
C2—C3—C4—N158.81 (17)C14—C16—C17—C110.3 (3)
O3—C3—C4—C563.93 (17)C12—C11—C17—C160.1 (3)
C2—C3—C4—C5−175.27 (13)S1—C11—C17—C16−178.00 (13)
N1—C4—C5—C640.6 (2)C5—C4—N1—S172.77 (17)
C3—C4—C5—C6−81.10 (19)C3—C4—N1—S1−163.68 (11)
N1—C4—C5—C10−139.84 (16)O1—C2—O2—C1−1.1 (2)
C3—C4—C5—C1098.44 (18)C3—C2—O2—C1176.38 (13)
C10—C5—C6—C70.6 (3)C4—N1—S1—O5170.37 (12)
C4—C5—C6—C7−179.90 (15)C4—N1—S1—O440.68 (14)
C5—C6—C7—C8−0.8 (3)C4—N1—S1—C11−74.42 (14)
C6—C7—C8—C90.5 (3)C17—C11—S1—O5−147.69 (14)
C7—C8—C9—C100.0 (3)C12—C11—S1—O534.16 (16)
C8—C9—C10—C5−0.2 (3)C17—C11—S1—O4−16.75 (16)
C6—C5—C10—C9−0.1 (2)C12—C11—S1—O4165.10 (13)
C4—C5—C10—C9−179.64 (15)C17—C11—S1—N198.09 (15)
C17—C11—C12—C13−0.1 (2)C12—C11—S1—N1−80.05 (14)
S1—C11—C12—C13178.01 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.842.503.270 (2)152
C1—H1C···O1ii0.982.523.392 (2)149
C4—H4···O3iii1.002.503.484 (2)166
C1—H1C···O1ii0.982.523.392 (2)149

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2324).

References

  • Bergmeier, S. (2000). Tetrahedron, 56, 2561–2576.
  • Bodkin, J. A. & McLeod, M. D. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2733–2746.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chinnakali, K., Poornachandran, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o1030–o1031.
  • Coote, S. C., O’Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem.6, 4299–4314. [PubMed]
  • Fadlalla, M. I., Friedrich, H. B., Maguire, G. E. M. & Bala, M. D. (2010). Acta Cryst. E66, o463. [PMC free article] [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Govender, M., Friedrich, H. B., Makhoba, X., Ngcobo, T. D. & Onani, M. O. (2003). Chem. Commun. p. 2922. [PubMed]
  • Krzeminski, M. P. & Wojtczak, A. (2005). Tetrahedron Lett.46, 8299–8302.
  • Liu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett.46, 1023–1025.
  • Lohray, B. B., Thombare, P. S. & Bhushan, V. (2002). PINSA, 68A, 391–1073.
  • Naicker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96–102.
  • Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, Y., Jiang, N., Chen, S., Peng, C., Zhang, X., Zou, Y., Zhang, S. & Wang, J. (2005). Tetrahedron, 61, 6546–6552.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography