PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1679.
Published online 2010 November 27. doi:  10.1107/S1600536810047033
PMCID: PMC3011727

cis-Dichlorido[2-methyl-8-(pyridin-2-ylmeth­oxy)quinoline-κ3 N,O,N′](triphenylphosphane-κP)ruthenium(II) methanol monosolvate

Abstract

In the structure of the title compound, [RuCl2(C16H14N2O)(C18H15P)]·CH3OH, he RuII ion shows a slightly distorted octahedral coordination by two N atoms and one O atom from the 2-methyl-8-(pyridin-2-ylmeth­oxy)quinoline acting as an N,O,N′-tridentate ligand, two Cl atoms, and one P atom from a PPh3 ligand. The two Cl atoms adopt a cis arrangement with the PPh3 ligand trans to one Cl atom. The N,O,N′-tridentate ligand occupies a mer position in the coordination sphere.

Related literature

For related structures, see: Al-Mandhary & Steel (2003 [triangle]); Deng et al. (2005 [triangle]); Xu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1679-scheme1.jpg

Experimental

Crystal data

  • [RuCl2(C16H14N2O)(C18H15P)]·CH4O
  • M r = 716.57
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1679-efi1.jpg
  • a = 8.868 (2) Å
  • b = 11.480 (2) Å
  • c = 31.6351 (18) Å
  • V = 3220.7 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 291 K
  • 0.28 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.820, T max = 0.855
  • 17669 measured reflections
  • 6304 independent reflections
  • 5620 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.117
  • S = 1.10
  • 6304 reflections
  • 391 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.91 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2722 Friedel pairs
  • Flack parameter: 0.06 (4)

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810047033/jh2228sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047033/jh2228Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Postgraduate Foundation of Shandong University of Technology (grant No. 4041 410007) for financial support.

supplementary crystallographic information

Comment

The N,O,N'-tridentate ligands with two pyridine-like donors and an ether donor are potentially a doubly chelating ligands in coordination chemistry. The presence of the flexible methylene and ether linkages allows the ligands to act as a folded N,N'-bidentate ligands or N,O,N'-tridentate ligands in meridional or facial arrangement, coordination to the metal coordinate (Al-Mandhary & Steel, 2003; Xu et al. 2009). Here, we report the synthesis and crystal structure of the title complex 1, [Ru(C16H14N2O)(PPh3)Cl2.CH3OH, which combines 2-methyl-8-(pyridineyl-2-methoxy)-quinoline and triphenylphosphane ligands. The molecular structure of the title compound is shown in Fig. 1. In the title complex 1, the ruthenium atom center is in a pseudooctahedral environment with the two nitrogen atoms and one oxygen atom which from 2-methyl-8-(pyridineyl-2-methoxy)-quinoline acts as a mer N,O,N'-tridentate ligand, two cis chlorine atoms and one phosphorus atom from PPh3 ligand trans to one chloride. The N—Ru—N angle is 158.25 (17)°. The N1—Ru—O1 and N2—Ru—O1 angles are 79.47 (17)° and 79.66 (16)°, respectively. The coordination between N,O,N'-tridentate ligand and the RuII yields two five-membered rings, RuN1C6C5O1 and RuO1C7C12N2. The Ru—Cl1 distance [2.4905 (14) Å], which is trans to the PPh3 ligand, is longer than the Ru—Cl2 distance [2.4104 (14) Å], similar differences are in agreement with reported value (Deng et al. 2005; Xu et al. 2009). The Ru—N(pyridine) [2.067 (5) Å], Ru—N(quinoline) [2.163 (5) Å], Ru—O [2.060 (3) Å] and Ru—P [2.2931 (15) Å] are similar to reported value (Deng et al. 2005; Xu et al. 2009).

Experimental

The synthesis of the title compound 1 was carried out as follows. 2-methyl-8-(pyridineyl-2-methoxy)-quinoline (0.286 g, 0.55 mmol) was added to a solution of RuCl2(PPh3)3 (0.491 g, 0.50 mmol) in CH3OH (25 ml). This mixture was refluxed for 8 h and then evaporated to dryness. The orange solid residue was dissolved in CH2Cl2 (ca 3 ml) and the resulting solution was transferred to a silica gel chromatography column. Elution with CH2Cl2/CH3OH (40:1) gave a yellow-orange band, from which complex 1 was obtained after solvent removal. Crystal of 1 suitable for X-ary structure determination was grown from CH3OH solution of the complex layered with ethyl ether.

Refinement

H atoms on C atoms were placed in idealized positions (C—H = 0.93—0.97 Å) and refined as riding atoms, with the Uiso(H) = 1.2 or 1.5Ueq(C). H atom attached to O atom are located in a difference Fourier map and refined as riding in their 'as found' positions with the Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The structure of 1, with atom lables and 30% probability displacement ellipsoids.

Crystal data

[RuCl2(C16H14N2O)(C18H15P)]·CH4OF(000) = 1464
Mr = 716.57Dx = 1.478 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 592 reflections
a = 8.868 (2) Åθ = 2.4–13.2°
b = 11.480 (2) ŵ = 0.74 mm1
c = 31.6351 (18) ÅT = 291 K
V = 3220.7 (10) Å3Block, orange
Z = 40.28 × 0.24 × 0.22 mm

Data collection

Bruker SMART APEX CCD diffractometer6304 independent reflections
Radiation source: sealed tube5620 reflections with I > 2σ(I)
graphiteRint = 0.030
phi and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −10→9
Tmin = 0.820, Tmax = 0.855k = −14→10
17669 measured reflectionsl = −38→38

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.117w = 1/[σ2(Fo2) + (0.06P)2 + 1.99P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
6304 reflectionsΔρmax = 0.70 e Å3
391 parametersΔρmin = −0.91 e Å3
0 restraintsAbsolute structure: Flack (1983), 2722 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1967 (7)0.4572 (6)0.6458 (2)0.0547 (15)
H10.17330.49930.62160.066*
C20.0977 (8)0.3754 (6)0.6601 (2)0.0547 (16)
H20.00910.36280.64510.066*
C30.1231 (7)0.3129 (5)0.69486 (18)0.0481 (14)
H30.05480.25610.70330.058*
C40.2514 (7)0.3333 (5)0.71807 (18)0.0482 (14)
H40.27070.29340.74310.058*
C50.3511 (6)0.4166 (5)0.70246 (16)0.0396 (11)
C60.4939 (7)0.4460 (5)0.72707 (17)0.0455 (12)
H6A0.47340.50640.74770.055*
H6B0.53090.37760.74180.055*
C70.7414 (7)0.5321 (5)0.71092 (17)0.0406 (12)
C80.8219 (7)0.4838 (5)0.74429 (15)0.0424 (13)
H80.77910.42500.76060.051*
C90.9665 (7)0.5233 (5)0.75332 (18)0.0512 (17)
H91.02040.49100.77570.061*
C101.0306 (6)0.6112 (5)0.72899 (18)0.0499 (15)
H101.12730.63760.73500.060*
C110.9500 (6)0.6594 (5)0.69561 (19)0.0416 (13)
C120.8054 (6)0.6199 (5)0.68658 (18)0.0409 (12)
C130.7889 (7)0.7560 (5)0.6289 (2)0.0498 (15)
C140.9335 (6)0.7956 (5)0.63790 (18)0.0481 (14)
H140.97640.85430.62160.058*
C151.0141 (8)0.7473 (4)0.67127 (15)0.0461 (13)
H151.11080.77370.67730.055*
C160.6974 (8)0.8152 (6)0.59660 (19)0.0556 (16)
H16A0.61680.76480.58780.083*
H16B0.75950.83370.57270.083*
H16C0.65610.88550.60820.083*
C170.4278 (6)0.3833 (5)0.56457 (16)0.0389 (12)
C180.3214 (7)0.4467 (5)0.54310 (19)0.0492 (15)
H180.32550.52760.54340.059*
C190.2062 (7)0.3896 (6)0.52066 (19)0.0520 (16)
H190.13520.43190.50540.062*
C200.2012 (7)0.2744 (5)0.5218 (2)0.0510 (15)
H200.12500.23670.50690.061*
C210.3002 (7)0.2094 (6)0.54320 (19)0.0514 (15)
H210.29170.12870.54290.062*
C220.4163 (8)0.2625 (5)0.5660 (2)0.0526 (15)
H220.48400.21830.58180.063*
C230.6972 (6)0.3305 (5)0.61146 (17)0.0397 (12)
C240.6582 (7)0.2702 (5)0.64730 (19)0.0469 (13)
H240.57810.29660.66370.056*
C250.7358 (8)0.1700 (5)0.65976 (17)0.0490 (15)
H250.71360.13460.68550.059*
C260.8444 (8)0.1244 (5)0.63414 (19)0.0529 (16)
H260.89350.05590.64160.063*
C270.8805 (6)0.1802 (4)0.59724 (17)0.0401 (12)
H270.95540.14970.57990.048*
C280.8063 (7)0.2826 (5)0.58537 (16)0.0407 (12)
H280.83020.31860.55990.049*
C290.6986 (7)0.5251 (5)0.55537 (18)0.0456 (14)
C300.6518 (7)0.5601 (5)0.51666 (17)0.0462 (14)
H300.55460.54220.50770.055*
C310.7457 (7)0.6215 (5)0.4905 (2)0.0510 (16)
H310.71180.64410.46390.061*
C320.8927 (7)0.6507 (5)0.50324 (19)0.0485 (15)
H320.95440.69440.48550.058*
C330.9447 (7)0.6144 (5)0.54189 (19)0.0499 (15)
H331.04410.62720.55000.060*
C340.8443 (7)0.5582 (5)0.56832 (18)0.0446 (14)
H340.87420.54150.59580.054*
C350.3573 (7)1.0239 (6)0.6490 (2)0.0559 (16)
H35A0.32181.10280.65080.084*
H35B0.44631.02140.63170.084*
H35C0.38060.99560.67680.084*
Cl10.43030 (16)0.71863 (12)0.70588 (4)0.0412 (3)
Cl20.35481 (17)0.69468 (12)0.60054 (5)0.0474 (3)
N10.3286 (5)0.4787 (4)0.66606 (13)0.0385 (10)
N20.7249 (5)0.6682 (4)0.65321 (14)0.0433 (11)
O10.6057 (4)0.4866 (3)0.69627 (11)0.0388 (8)
O20.2468 (5)0.9549 (4)0.63110 (15)0.0588 (12)
H2A0.28520.89550.62160.071*
P10.57943 (18)0.45692 (12)0.59589 (4)0.0401 (3)
Ru10.50826 (5)0.58272 (3)0.648543 (12)0.03625 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.050 (3)0.057 (4)0.057 (4)−0.008 (3)−0.002 (3)−0.018 (3)
C20.056 (4)0.058 (4)0.051 (4)−0.014 (3)−0.004 (3)0.008 (3)
C30.054 (4)0.044 (3)0.047 (3)−0.016 (3)−0.014 (3)0.011 (3)
C40.051 (3)0.050 (3)0.043 (3)−0.005 (3)−0.011 (3)0.008 (3)
C50.041 (3)0.035 (3)0.044 (3)0.004 (3)0.004 (2)0.001 (2)
C60.039 (3)0.049 (3)0.049 (3)0.012 (3)−0.001 (3)0.018 (2)
C70.042 (3)0.036 (3)0.044 (3)−0.002 (2)−0.012 (2)−0.004 (2)
C80.049 (3)0.051 (3)0.027 (3)−0.012 (3)−0.006 (2)0.006 (2)
C90.057 (5)0.058 (4)0.038 (3)0.015 (3)−0.019 (3)−0.021 (3)
C100.038 (3)0.059 (4)0.052 (3)0.005 (3)−0.015 (3)−0.016 (3)
C110.030 (3)0.043 (3)0.051 (3)−0.006 (2)0.001 (2)−0.009 (2)
C120.037 (3)0.034 (3)0.052 (3)0.000 (2)−0.006 (2)−0.012 (2)
C130.057 (4)0.036 (3)0.056 (3)−0.002 (3)0.002 (3)−0.001 (3)
C140.033 (3)0.056 (3)0.055 (3)−0.005 (3)0.011 (3)−0.012 (3)
C150.053 (3)0.044 (3)0.041 (3)0.004 (3)0.019 (3)−0.015 (2)
C160.069 (4)0.051 (4)0.047 (3)−0.009 (3)0.009 (3)0.011 (3)
C170.043 (3)0.040 (3)0.034 (3)0.005 (2)0.004 (2)−0.021 (2)
C180.051 (3)0.039 (3)0.058 (4)−0.001 (3)−0.018 (3)−0.019 (3)
C190.043 (3)0.059 (4)0.054 (4)0.015 (3)−0.011 (3)−0.019 (3)
C200.045 (3)0.044 (3)0.063 (4)−0.003 (3)−0.013 (3)−0.022 (3)
C210.043 (3)0.057 (4)0.054 (3)−0.011 (3)−0.011 (3)−0.014 (3)
C220.056 (4)0.037 (3)0.065 (4)−0.015 (3)−0.009 (3)0.005 (3)
C230.037 (3)0.035 (3)0.047 (3)−0.008 (2)−0.009 (2)−0.008 (2)
C240.057 (3)0.039 (3)0.044 (3)0.001 (2)−0.021 (3)0.000 (3)
C250.067 (4)0.045 (3)0.035 (3)0.005 (3)0.001 (3)0.024 (2)
C260.069 (4)0.037 (3)0.053 (3)0.022 (3)−0.009 (3)0.003 (3)
C270.041 (3)0.031 (3)0.048 (3)0.013 (2)−0.012 (2)−0.016 (2)
C280.051 (3)0.046 (3)0.025 (2)0.000 (3)−0.012 (2)−0.004 (2)
C290.053 (3)0.040 (3)0.044 (3)0.015 (3)0.009 (3)0.013 (3)
C300.055 (4)0.045 (3)0.039 (3)0.004 (3)0.001 (3)0.003 (2)
C310.049 (3)0.046 (3)0.058 (4)0.025 (3)0.019 (3)0.017 (3)
C320.048 (4)0.047 (3)0.051 (3)0.016 (3)0.013 (3)0.026 (3)
C330.056 (4)0.041 (3)0.054 (3)0.015 (2)0.014 (3)0.006 (3)
C340.055 (3)0.034 (3)0.044 (3)0.007 (2)0.020 (3)0.006 (2)
C350.064 (4)0.057 (4)0.046 (3)−0.013 (3)0.023 (3)−0.020 (3)
Cl10.0449 (7)0.0410 (7)0.0376 (6)−0.0005 (6)−0.0036 (6)−0.0007 (5)
Cl20.0492 (8)0.0461 (8)0.0470 (7)−0.0014 (6)−0.0080 (6)0.0143 (6)
N10.047 (3)0.043 (3)0.0254 (19)−0.003 (2)−0.0019 (19)−0.0066 (18)
N20.047 (3)0.048 (3)0.035 (2)−0.006 (2)−0.007 (2)−0.006 (2)
O10.045 (2)0.0283 (18)0.043 (2)−0.0104 (15)−0.0085 (17)0.0118 (16)
O20.059 (3)0.048 (3)0.069 (3)0.022 (2)−0.015 (2)−0.021 (2)
P10.0446 (8)0.0387 (7)0.0369 (7)0.0004 (6)−0.0016 (6)−0.0002 (6)
Ru10.0366 (2)0.03698 (19)0.03518 (19)−0.0014 (2)−0.0037 (2)0.00081 (16)

Geometric parameters (Å, °)

C1—N11.356 (8)C19—H190.9300
C1—C21.362 (9)C20—C211.337 (9)
C1—H10.9300C20—H200.9300
C2—C31.332 (8)C21—C221.398 (8)
C2—H20.9300C21—H210.9300
C3—C41.374 (8)C22—H220.9300
C3—H30.9300C23—C241.373 (8)
C4—C51.393 (8)C23—C281.385 (8)
C4—H40.9300C23—P11.855 (6)
C5—N11.369 (7)C24—C251.397 (8)
C5—C61.524 (8)C24—H240.9300
C6—O11.466 (7)C25—C261.363 (9)
C6—H6A0.9700C25—H250.9300
C6—H6B0.9700C26—C271.370 (8)
C7—C81.390 (8)C26—H260.9300
C7—C121.390 (8)C27—C281.398 (7)
C7—O11.391 (7)C27—H270.9300
C8—C91.390 (9)C28—H280.9300
C8—H80.9300C29—C301.354 (8)
C9—C101.390 (9)C29—C341.407 (9)
C9—H90.9300C29—P11.837 (6)
C10—C111.390 (8)C30—C311.369 (8)
C10—H100.9300C30—H300.9300
C11—C121.390 (8)C31—C321.404 (9)
C11—C151.390 (8)C31—H310.9300
C12—N21.390 (7)C32—C331.372 (8)
C13—N21.390 (8)C32—H320.9300
C13—C141.390 (9)C33—C341.382 (8)
C13—C161.470 (9)C33—H330.9300
C14—C151.390 (9)C34—H340.9300
C14—H140.9300C35—O21.381 (7)
C15—H150.9300C35—H35A0.9600
C16—H16A0.9600C35—H35B0.9600
C16—H16B0.9600C35—H35C0.9600
C16—H16C0.9600Cl1—Ru12.4905 (14)
C17—C181.371 (8)Cl2—Ru12.4104 (14)
C17—C221.392 (8)N1—Ru12.067 (5)
C17—P11.872 (6)N2—Ru12.162 (5)
C18—C191.406 (8)O1—Ru12.060 (3)
C18—H180.9300O2—H2A0.8200
C19—C201.325 (9)P1—Ru12.2931 (15)
N1—C1—C2121.7 (7)C24—C23—P1118.2 (4)
N1—C1—H1119.2C28—C23—P1123.1 (4)
C2—C1—H1119.2C23—C24—C25121.6 (6)
C3—C2—C1122.4 (7)C23—C24—H24119.2
C3—C2—H2118.8C25—C24—H24119.2
C1—C2—H2118.8C26—C25—C24119.8 (5)
C2—C3—C4119.3 (6)C26—C25—H25120.1
C2—C3—H3120.4C24—C25—H25120.1
C4—C3—H3120.4C25—C26—C27119.5 (5)
C3—C4—C5117.0 (5)C25—C26—H26120.2
C3—C4—H4121.5C27—C26—H26120.2
C5—C4—H4121.5C26—C27—C28120.8 (5)
N1—C5—C4124.3 (5)C26—C27—H27119.6
N1—C5—C6115.8 (5)C28—C27—H27119.6
C4—C5—C6119.9 (5)C23—C28—C27120.2 (5)
O1—C6—C5107.0 (4)C23—C28—H28119.9
O1—C6—H6A110.3C27—C28—H28119.9
C5—C6—H6A110.3C30—C29—C34117.7 (6)
O1—C6—H6B110.3C30—C29—P1125.5 (5)
C5—C6—H6B110.3C34—C29—P1116.1 (4)
H6A—C6—H6B108.6C29—C30—C31120.8 (6)
C8—C7—C12120.0 (5)C29—C30—H30119.6
C8—C7—O1123.2 (5)C31—C30—H30119.6
C12—C7—O1116.2 (5)C30—C31—C32120.9 (6)
C9—C8—C7120.0 (5)C30—C31—H31119.5
C9—C8—H8120.0C32—C31—H31119.5
C7—C8—H8120.0C33—C32—C31119.7 (6)
C8—C9—C10120.0 (5)C33—C32—H32120.1
C8—C9—H9120.0C31—C32—H32120.1
C10—C9—H9120.0C32—C33—C34117.7 (6)
C11—C10—C9120.0 (5)C32—C33—H33121.2
C11—C10—H10120.0C34—C33—H33121.2
C9—C10—H10120.0C33—C34—C29122.8 (6)
C12—C11—C10120.0 (5)C33—C34—H34118.6
C12—C11—C15120.0 (6)C29—C34—H34118.6
C10—C11—C15120.0 (5)O2—C35—H35A109.5
C11—C12—N2120.0 (5)O2—C35—H35B109.5
C11—C12—C7120.0 (5)H35A—C35—H35B109.5
N2—C12—C7120.0 (5)O2—C35—H35C109.5
N2—C13—C14120.0 (6)H35A—C35—H35C109.5
N2—C13—C16119.6 (6)H35B—C35—H35C109.5
C14—C13—C16120.1 (6)C1—N1—C5115.3 (5)
C13—C14—C15120.0 (6)C1—N1—Ru1130.1 (4)
C13—C14—H14120.0C5—N1—Ru1114.5 (4)
C15—C14—H14120.0C13—N2—C12120.0 (5)
C14—C15—C11120.0 (6)C13—N2—Ru1130.9 (4)
C14—C15—H15120.0C12—N2—Ru1109.1 (4)
C11—C15—H15120.0C7—O1—C6118.9 (4)
C13—C16—H16A109.5C7—O1—Ru1113.9 (3)
C13—C16—H16B109.5C6—O1—Ru1111.9 (3)
H16A—C16—H16B109.5C35—O2—H2A109.5
C13—C16—H16C109.5C29—P1—C23101.2 (3)
H16A—C16—H16C109.5C29—P1—C17103.7 (3)
H16B—C16—H16C109.5C23—P1—C17101.1 (2)
C18—C17—C22119.7 (5)C29—P1—Ru1113.4 (2)
C18—C17—P1121.1 (4)C23—P1—Ru1117.07 (18)
C22—C17—P1119.0 (5)C17—P1—Ru1118.10 (17)
C17—C18—C19120.2 (5)O1—Ru1—N179.47 (17)
C17—C18—H18119.9O1—Ru1—N279.66 (16)
C19—C18—H18119.9N1—Ru1—N2158.25 (17)
C20—C19—C18118.5 (6)O1—Ru1—P194.55 (11)
C20—C19—H19120.8N1—Ru1—P192.46 (12)
C18—C19—H19120.8N2—Ru1—P195.22 (13)
C19—C20—C21123.3 (6)O1—Ru1—Cl2169.80 (11)
C19—C20—H20118.4N1—Ru1—Cl292.40 (14)
C21—C20—H20118.4N2—Ru1—Cl2107.61 (13)
C20—C21—C22120.2 (6)P1—Ru1—Cl291.93 (6)
C20—C21—H21119.9O1—Ru1—Cl185.32 (11)
C22—C21—H21119.9N1—Ru1—Cl187.29 (12)
C17—C22—C21118.1 (6)N2—Ru1—Cl184.98 (13)
C17—C22—H22121.0P1—Ru1—Cl1179.74 (6)
C21—C22—H22121.0Cl2—Ru1—Cl188.17 (5)
C24—C23—C28117.9 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2228).

References

  • Al-Mandhary, M. R. A. & Steel, P. J. (2003). Inorg. Chim. Acta, 351, 7–11.
  • Bruker (2003). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deng, H.-X., Yu, Z.-K., Dong, J.-H. & Wu, S.-Z. (2005). Organometallics, 24, 4110–4112.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, X.-J., Lu, X.-Y., Li, Y.-Z., Chen, X.-T. & Xue, Z.-L. (2009). Inorg. Chim. Acta, 362, 4774–4779.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography