PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1580.
Published online 2010 November 17. doi:  10.1107/S1600536810046611
PMCID: PMC3011725

catena-Poly[[dichloridozinc(II)]-μ-[1,1′-(butane-1,4-di­yl)diimidazole-κ2 N 3:N 3′]]

Abstract

The title one-dimensional coordination polymer, [ZnCl2(C10H14N4)]n, was synthesized by hydro­thermal methods from ZnCl2 and 1,1′-(butane-1,4-di­yl)diimidazole. The Zn atom is coordinated by two chloride ions and two N atoms from two symmetry-independent organic ligands and shows a distorted tetra­hedral coordination geometry. The 1,1′-(butane-1,4-di­yl)diimidazole ligands are located around two sets of inversion centers and bridge ZnII ions, forming a zigzag polymeric chain. C—H(...)Cl hydrogen bonding results in the formation of a three-dimensional supra­molecular network

Related literature

For general background to this work, see: Hamada et al. (2004 [triangle]); Wang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1580-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C10H14N4)]
  • M r = 326.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1580-efi5.jpg
  • a = 7.8583 (16) Å
  • b = 11.689 (2) Å
  • c = 15.882 (3) Å
  • β = 93.82 (3)°
  • V = 1455.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.04 mm−1
  • T = 293 K
  • 0.34 × 0.27 × 0.22 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.428, T max = 0.731
  • 13865 measured reflections
  • 3309 independent reflections
  • 2701 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.126
  • S = 1.01
  • 3309 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 1.33 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Siemens, 1994 [triangle]); cell refinement: SAINT (Siemens, 1994 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046611/gk2314sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046611/gk2314Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support from the Natural Science Foundation of Fujian (2008 J0172) and the Foundation of Fujian Education Committee (JA10205).

supplementary crystallographic information

Comment

The chemistry of novel metal–organic coordination complexes has attached more and more attention in recent years because of their interesting topologies and unexpected properties for potential applications . Recently, there has been increasing interest in zinc–halogen compounds because of their applications in molecular materials (Hamada et al. 2004; Wang et al., 2006). In this communication, we have introduced 1,1'-(butane-1,4-diyl)diimidazole (bbi) as a bridging ligand which favors crystal growth of the 1-D chain-like polymer. Through a mild-temperature hydrothermal process, we have successfully synthesized the title crystalline Cl-coordinated Zn complex, [ZnCl2(C10H14N4)]n, (I).

The molecular structure of (I) is shown in Fig. 1. The compound features 1-D chain-like polymer complex, in which the Zn atom is coordinated by two Cl anions and two N atoms from two bbi ligands in a distorted tetrahedral geometry, in which the Zn—Cl (2.238 (1) and 2.2567 (9) Å) and Zn—N(2.010 (2) and 2.016 (3) Å) bond lengths are in the expected ranges. Each bbi ligand in the title compound is located on an inversion center and bridges ZnII ions, forming a zigzag polymeric chain with the adjacent Zn···Zn separation of 13.971 Å.

The strong C—H···Cl hydrogen bonding results in the formation of a 3-D supramolecular network, as shown in Fig. 2.

Experimental

The hydrothermal reaction of ZnCl2 (0.041 g, 0.3 mmol), bbi (0.076 g, 0.4 mmol) and water (15.0 ml) was carried out at 423 K for 3 d. After cooling to room temperature at a rate of 5 K h-1, block-shaped colorless crystals of the title compound suitable for X-ray analysis were obtained.

Refinement

The C-bound H atoms were positioned geometrically, with C—H = 0.93 - 0.97 Å and all refined as riding with Uiso(H) = 1.2Ueq(C). The crystal exhibited minor twinning which was not accounted for.

Figures

Fig. 1.
View of the title coordination polymer showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. Symmetry code: (i) -x, -1/2 + y, 1/2 - z; (ii) x, 3/2 - y, -1/2 + z.
Fig. 2.
Crystal packing viewed along the a axis. C-H···Cl contacts are shown with dashed lines

Crystal data

[ZnCl2(C10H14N4)]F(000) = 664
Mr = 326.52Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13865 reflections
a = 7.8583 (16) Åθ = 3.1–27.4°
b = 11.689 (2) ŵ = 2.04 mm1
c = 15.882 (3) ÅT = 293 K
β = 93.82 (3)°Block, colorless
V = 1455.6 (5) Å30.34 × 0.27 × 0.22 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer3309 independent reflections
Radiation source: fine-focus sealed tube2701 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.1°
[var phi] and ω scansh = −10→8
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −15→15
Tmin = 0.428, Tmax = 0.731l = −20→20
13865 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0822P)2 + 0.5697P] where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.03756 (4)0.88757 (3)0.221856 (19)0.03812 (15)
Cl10.16460 (10)1.03238 (7)0.15605 (5)0.0490 (2)
Cl2−0.16703 (11)0.94302 (9)0.30450 (5)0.0595 (3)
N1−0.0583 (3)0.7849 (2)0.12834 (15)0.0459 (6)
N2−0.1741 (4)0.6401 (3)0.05838 (18)0.0564 (7)
N30.2244 (3)0.7996 (2)0.28566 (15)0.0414 (5)
N40.3570 (3)0.6570 (2)0.35199 (15)0.0418 (5)
C1−0.1396 (5)0.6874 (3)0.1340 (2)0.0561 (9)
H1A−0.16950.65540.18450.067*
C2−0.0383 (5)0.7996 (3)0.0444 (2)0.0604 (9)
H2A0.01750.86070.02090.072*
C3−0.1123 (6)0.7112 (4)0.0007 (2)0.0692 (11)
H3A−0.11920.7015−0.05750.083*
C4−0.2665 (6)0.5326 (3)0.0393 (3)0.0721 (11)
H4A−0.25900.48400.08900.087*
H4B−0.21320.4926−0.00550.087*
C5−0.4511 (6)0.5543 (3)0.0128 (3)0.0687 (11)
H5A−0.45770.6072−0.03440.082*
H5B−0.50530.59040.05910.082*
C60.2058 (4)0.7031 (3)0.32738 (19)0.0443 (7)
H6A0.10110.67120.33830.053*
C70.3969 (4)0.8154 (3)0.2830 (2)0.0539 (8)
H7A0.44830.87690.25760.065*
C80.4809 (4)0.7279 (3)0.3232 (2)0.0565 (9)
H8A0.59840.71760.32990.068*
C90.3835 (4)0.5474 (3)0.3955 (2)0.0487 (7)
H9A0.44690.49690.36070.058*
H9B0.27350.51230.40260.058*
C100.4794 (4)0.5590 (3)0.48174 (18)0.0437 (7)
H10A0.58420.60140.47620.052*
H10B0.41020.60100.51950.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0373 (2)0.0380 (2)0.0379 (2)−0.00093 (13)−0.00600 (14)0.00377 (12)
Cl10.0466 (4)0.0420 (4)0.0590 (5)−0.0042 (3)0.0084 (3)0.0081 (3)
Cl20.0531 (5)0.0777 (7)0.0488 (4)0.0073 (4)0.0110 (4)0.0122 (4)
N10.0504 (15)0.0459 (14)0.0400 (12)−0.0080 (12)−0.0086 (10)0.0022 (11)
N20.0651 (19)0.0498 (16)0.0520 (15)−0.0153 (14)−0.0124 (14)0.0002 (13)
N30.0360 (13)0.0409 (13)0.0460 (12)0.0014 (10)−0.0065 (10)0.0084 (11)
N40.0400 (13)0.0421 (14)0.0422 (12)0.0022 (11)−0.0056 (10)0.0072 (10)
C10.073 (2)0.052 (2)0.0418 (16)−0.0170 (17)−0.0112 (15)0.0081 (14)
C20.073 (2)0.064 (2)0.0437 (16)−0.0237 (19)0.0012 (16)0.0009 (16)
C30.087 (3)0.077 (3)0.0434 (17)−0.028 (2)0.0009 (18)−0.0078 (18)
C40.087 (3)0.051 (2)0.074 (2)−0.020 (2)−0.022 (2)0.0015 (19)
C50.081 (3)0.057 (2)0.065 (2)−0.025 (2)−0.0131 (19)−0.0024 (18)
C60.0374 (15)0.0431 (16)0.0507 (16)−0.0028 (13)−0.0089 (12)0.0069 (13)
C70.0449 (17)0.057 (2)0.0591 (19)−0.0017 (15)0.0001 (14)0.0220 (16)
C80.0363 (16)0.066 (2)0.067 (2)0.0072 (15)0.0039 (14)0.0189 (18)
C90.0534 (19)0.0411 (17)0.0499 (17)0.0026 (14)−0.0097 (14)0.0074 (13)
C100.0476 (17)0.0436 (17)0.0393 (15)0.0059 (13)−0.0007 (12)0.0060 (12)

Geometric parameters (Å, °)

Zn1—N32.010 (2)C3—H3A0.9300
Zn1—N12.016 (3)C4—C51.505 (6)
Zn1—Cl22.2381 (11)C4—H4A0.9700
Zn1—Cl12.2567 (9)C4—H4B0.9700
N1—C11.312 (4)C5—C5i1.525 (7)
N1—C21.363 (4)C5—H5A0.9700
N2—C11.334 (4)C5—H5B0.9700
N2—C31.352 (5)C6—H6A0.9300
N2—C41.472 (5)C7—C81.354 (5)
N3—C61.322 (4)C7—H7A0.9300
N3—C71.371 (4)C8—H8A0.9300
N4—C61.339 (4)C9—C101.524 (4)
N4—C81.380 (4)C9—H9A0.9700
N4—C91.464 (4)C9—H9B0.9700
C1—H1A0.9300C10—C10ii1.522 (6)
C2—C31.353 (5)C10—H10A0.9700
C2—H2A0.9300C10—H10B0.9700
N3—Zn1—N1106.94 (11)N2—C4—H4B109.3
N3—Zn1—Cl2112.43 (8)C5—C4—H4B109.3
N1—Zn1—Cl2110.90 (8)H4A—C4—H4B108.0
N3—Zn1—Cl1106.64 (8)C4—C5—C5i113.2 (5)
N1—Zn1—Cl1105.09 (8)C4—C5—H5A108.9
Cl2—Zn1—Cl1114.31 (4)C5i—C5—H5A108.9
C1—N1—C2105.3 (3)C4—C5—H5B108.9
C1—N1—Zn1128.8 (2)C5i—C5—H5B108.9
C2—N1—Zn1125.7 (2)H5A—C5—H5B107.8
C1—N2—C3107.1 (3)N3—C6—N4111.4 (3)
C1—N2—C4127.4 (3)N3—C6—H6A124.3
C3—N2—C4125.5 (3)N4—C6—H6A124.3
C6—N3—C7105.8 (2)C8—C7—N3109.6 (3)
C6—N3—Zn1126.0 (2)C8—C7—H7A125.2
C7—N3—Zn1127.3 (2)N3—C7—H7A125.2
C6—N4—C8107.1 (3)C7—C8—N4106.1 (3)
C6—N4—C9125.8 (3)C7—C8—H8A126.9
C8—N4—C9127.0 (3)N4—C8—H8A126.9
N1—C1—N2111.7 (3)N4—C9—C10113.1 (3)
N1—C1—H1A124.2N4—C9—H9A109.0
N2—C1—H1A124.2C10—C9—H9A109.0
C3—C2—N1109.4 (3)N4—C9—H9B109.0
C3—C2—H2A125.3C10—C9—H9B109.0
N1—C2—H2A125.3H9A—C9—H9B107.8
N2—C3—C2106.5 (3)C10ii—C10—C9110.0 (3)
N2—C3—H3A126.8C10ii—C10—H10A109.7
C2—C3—H3A126.8C9—C10—H10A109.7
N2—C4—C5111.5 (3)C10ii—C10—H10B109.7
N2—C4—H4A109.3C9—C10—H10B109.7
C5—C4—H4A109.3H10A—C10—H10B108.2
N3—Zn1—N1—C164.7 (3)C1—N2—C3—C21.2 (5)
Cl2—Zn1—N1—C1−58.2 (3)C4—N2—C3—C2179.5 (4)
Cl1—Zn1—N1—C1177.8 (3)N1—C2—C3—N2−1.7 (5)
N3—Zn1—N1—C2−109.5 (3)C1—N2—C4—C597.3 (5)
Cl2—Zn1—N1—C2127.6 (3)C3—N2—C4—C5−80.7 (5)
Cl1—Zn1—N1—C23.6 (3)N2—C4—C5—C5i176.4 (4)
N1—Zn1—N3—C6−62.4 (3)C7—N3—C6—N40.4 (4)
Cl2—Zn1—N3—C659.6 (3)Zn1—N3—C6—N4170.4 (2)
Cl1—Zn1—N3—C6−174.4 (2)C8—N4—C6—N3−0.8 (4)
N1—Zn1—N3—C7105.5 (3)C9—N4—C6—N3−176.6 (3)
Cl2—Zn1—N3—C7−132.6 (3)C6—N3—C7—C80.1 (4)
Cl1—Zn1—N3—C7−6.6 (3)Zn1—N3—C7—C8−169.7 (2)
C2—N1—C1—N2−0.7 (4)N3—C7—C8—N4−0.6 (4)
Zn1—N1—C1—N2−175.9 (2)C6—N4—C8—C70.9 (4)
C3—N2—C1—N1−0.3 (5)C9—N4—C8—C7176.6 (3)
C4—N2—C1—N1−178.6 (4)C6—N4—C9—C10−120.0 (3)
C1—N1—C2—C31.5 (5)C8—N4—C9—C1065.1 (4)
Zn1—N1—C2—C3176.8 (3)N4—C9—C10—C10ii−173.2 (3)

Symmetry codes: (i) −x−1, −y+1, −z; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl2iii0.932.773.601 (4)149
C6—H6A···Cl1iv0.932.653.553 (3)164

Symmetry codes: (iii) x, −y+3/2, z−1/2; (iv) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2314).

References

  • Hamada, T., Manabe, K. & Kobayashi, S. (2004). J. Am. Chem. Soc.126, 7768–7769. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, X. L., Qin, C., Wang, E. B. & Su, Z. M. (2006). Chem. Eur. J.12, 2680–2691. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography