PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3123.
Published online 2010 November 10. doi:  10.1107/S160053681004540X
PMCID: PMC3011719

N,N′-Bis[(E)-(2-chloro-8-methyl­quinolin-3-yl)methyl­idene]ethane-1,2-diamine

Abstract

The complete mol­ecule of the title compound, C24H20Cl2N4, is generated by a crystallographic inversion centre. A kink in the mol­ecule is evident [C—N—C—C torsion angle = −147.0 (3)°] owing to the twist in the central ethyl­ene bridge. Further, there is a small twist between the imine [N=C = 1.267 (3) Å] and quinoline residues [N—C—C—C = −12.4 (4)°]. In the crystal, a combination of π–π [pyridine–benzene centroid–centroid distance = 3.5670 (14) Å] and C—H(...)N contacts leads to supra­molecular chains propagating in [010].

Related literature

For background to the photophysical properties of Schiff base complexes derivativatized with quinoline residues, see: Liu et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3123-scheme1.jpg

Experimental

Crystal data

  • C24H20Cl2N4
  • M r = 435.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3123-efi1.jpg
  • a = 18.363 (2) Å
  • b = 3.9494 (5) Å
  • c = 14.1726 (19) Å
  • β = 99.056 (2)°
  • V = 1015.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 100 K
  • 0.30 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.756, T max = 0.862
  • 8859 measured reflections
  • 2324 independent reflections
  • 1863 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.140
  • S = 1.05
  • 2324 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004540X/hb5727sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004540X/hb5727Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

Interest in the title compound arises as a result of the recent report of the photophysical properties of Schiff base complexes derivativatized with quinoline residues (Liu et al., 2010). The title molecule, Fig. 1, is disposed about a centre of inversion so that the pendent quinoline groups are co-planar. Owing to the twist in the central ethylene bridge, there is a kink in the molecule as manifested in the value of the C2—N1—C1—C1i torsion angle of -147.0 (3) °; i: 1 - x, 1 - y, 1 - z. There is a smaller twist between the imine [N1═C2 = 1.267 (3) Å] and quinoline residues as seen in the N1—C2—C3—C5 torsion angle of -12.4 (4) °.

The crystal packing is dominated by weak π–π and C—H···N contacts that lead to the formation of a supramolecular chain along the b axis, Fig. 2. The π–π contacts occur between translationally related quinoline rings [ring centroid(N2,C3–C6,C11)···ring centroid(C6–C11)ii = 3.5670 (14) Å with an angle of inclination = 0.41 (11) ° for ii: x, -1 + y, z] and the C—H···N contacts occur between the methylene-H and imine-N1 atoms, Table 1. Chains pack as shown in Fig. 3.

Experimental

A mixture of 2-chloro-3-formyl-8-methylquinoline (0.2 g, 1 mM) and ethylenediamine (0.03 ml, 0.5 mM) was stirred in dichloromethane for 3 h at room temperature. The solvent from the reaction mixture was removed under reduced pressure. The resulting solid was dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and hexane. Recrystallization was by slow evaporation of a dichloromethane solution which yielded yellow prisms of (I). Yield: 65%. M.pt. 475–477 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C).

Figures

Fig. 1.
Molecular structure showing displacement ellipsoids at the 50% probability level. Symmetry operation i: 1 - x, 1 - y, 1 - z.
Fig. 2.
A view of the supramolecular chain along the b axis mediated by π–π and C—H···N contacts are shown as purple and orange dashed lines, respectively.
Fig. 3.
Stacking of chains in the crystal structure. The π–π and C—H···N contacts are shown as purple and orange dashed lines, respectively.

Crystal data

C24H20Cl2N4F(000) = 452
Mr = 435.34Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1737 reflections
a = 18.363 (2) Åθ = 2.9–28.1°
b = 3.9494 (5) ŵ = 0.34 mm1
c = 14.1726 (19) ÅT = 100 K
β = 99.056 (2)°Prism, yellow
V = 1015.0 (2) Å30.30 × 0.15 × 0.05 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer2324 independent reflections
Radiation source: fine-focus sealed tube1863 reflections with I > 2σ(I)
graphiteRint = 0.055
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −23→21
Tmin = 0.756, Tmax = 0.862k = −5→5
8859 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.073P)2 + 0.7018P] where P = (Fo2 + 2Fc2)/3
2324 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.66489 (3)0.91685 (16)0.86511 (4)0.0207 (2)
N10.57606 (11)0.7565 (5)0.56683 (14)0.0198 (4)
N20.77325 (10)1.1953 (5)0.79768 (12)0.0146 (4)
C10.50497 (13)0.5852 (7)0.54853 (16)0.0193 (5)
H1A0.46490.75160.55050.023*
H1B0.50220.41370.59880.023*
C20.60887 (13)0.7696 (6)0.65240 (16)0.0182 (5)
H20.58780.66180.70160.022*
C30.67969 (12)0.9510 (6)0.67619 (16)0.0163 (5)
C40.71175 (12)1.0337 (6)0.77157 (15)0.0156 (5)
C50.71871 (12)1.0545 (6)0.60569 (15)0.0159 (5)
H50.69991.00760.54070.019*
C60.78589 (12)1.2285 (6)0.62878 (14)0.0144 (5)
C70.82776 (13)1.3369 (6)0.55873 (15)0.0161 (5)
H70.81081.29340.49300.019*
C80.89247 (13)1.5042 (6)0.58613 (15)0.0176 (5)
H80.92091.57410.53910.021*
C90.91795 (12)1.5753 (6)0.68373 (15)0.0163 (5)
H90.96301.69500.70080.020*
C100.87912 (12)1.4754 (6)0.75412 (15)0.0142 (5)
C110.81194 (12)1.2958 (6)0.72724 (15)0.0141 (5)
C120.90516 (13)1.5567 (6)0.85775 (15)0.0181 (5)
H12A0.95081.68910.86370.027*
H12B0.91441.34570.89410.027*
H12C0.86721.68800.88290.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0217 (3)0.0290 (4)0.0120 (3)−0.0042 (2)0.0040 (2)0.0005 (2)
N10.0181 (10)0.0211 (11)0.0184 (10)−0.0028 (8)−0.0021 (7)0.0020 (8)
N20.0164 (10)0.0186 (10)0.0089 (8)0.0010 (8)0.0022 (7)0.0005 (7)
C10.0185 (12)0.0208 (12)0.0176 (12)−0.0030 (10)−0.0003 (9)−0.0001 (9)
C20.0184 (11)0.0191 (12)0.0168 (11)−0.0001 (9)0.0019 (8)−0.0006 (9)
C30.0178 (11)0.0160 (12)0.0144 (10)0.0022 (9)−0.0001 (8)−0.0012 (9)
C40.0187 (12)0.0171 (12)0.0114 (10)0.0016 (9)0.0031 (8)0.0019 (8)
C50.0201 (12)0.0172 (11)0.0095 (9)0.0020 (9)−0.0009 (8)−0.0008 (8)
C60.0182 (11)0.0150 (11)0.0093 (10)0.0039 (9)0.0005 (8)−0.0002 (8)
C70.0200 (12)0.0209 (12)0.0071 (9)0.0046 (9)0.0009 (8)0.0011 (8)
C80.0203 (12)0.0221 (12)0.0109 (10)0.0038 (9)0.0041 (8)0.0018 (8)
C90.0172 (11)0.0171 (12)0.0141 (10)0.0004 (9)0.0006 (8)0.0000 (9)
C100.0190 (11)0.0145 (11)0.0086 (9)0.0031 (9)0.0009 (8)−0.0006 (8)
C110.0159 (11)0.0163 (11)0.0097 (10)0.0029 (9)0.0012 (8)0.0007 (8)
C120.0194 (11)0.0252 (13)0.0088 (10)−0.0030 (10)−0.0005 (8)−0.0018 (9)

Geometric parameters (Å, °)

Cl1—C41.752 (2)C6—C71.414 (3)
N1—C21.267 (3)C6—C111.427 (3)
N1—C11.457 (3)C7—C81.362 (3)
N2—C41.299 (3)C7—H70.9500
N2—C111.372 (3)C8—C91.417 (3)
C1—C1i1.517 (4)C8—H80.9500
C1—H1A0.9900C9—C101.372 (3)
C1—H1B0.9900C9—H90.9500
C2—C31.477 (3)C10—C111.422 (3)
C2—H20.9500C10—C121.506 (3)
C3—C51.380 (3)C12—H12A0.9800
C3—C41.425 (3)C12—H12B0.9800
C5—C61.405 (3)C12—H12C0.9800
C5—H50.9500
C2—N1—C1117.8 (2)C7—C6—C11119.6 (2)
C4—N2—C11117.47 (18)C8—C7—C6119.5 (2)
N1—C1—C1i110.1 (2)C8—C7—H7120.2
N1—C1—H1A109.6C6—C7—H7120.2
C1i—C1—H1A109.6C7—C8—C9120.9 (2)
N1—C1—H1B109.6C7—C8—H8119.5
C1i—C1—H1B109.6C9—C8—H8119.5
H1A—C1—H1B108.1C10—C9—C8121.6 (2)
N1—C2—C3120.5 (2)C10—C9—H9119.2
N1—C2—H2119.8C8—C9—H9119.2
C3—C2—H2119.8C9—C10—C11118.47 (19)
C5—C3—C4115.8 (2)C9—C10—C12121.8 (2)
C5—C3—C2121.2 (2)C11—C10—C12119.77 (19)
C4—C3—C2123.1 (2)N2—C11—C10118.43 (19)
N2—C4—C3126.4 (2)N2—C11—C6121.7 (2)
N2—C4—Cl1114.97 (16)C10—C11—C6119.9 (2)
C3—C4—Cl1118.60 (18)C10—C12—H12A109.5
C3—C5—C6120.9 (2)C10—C12—H12B109.5
C3—C5—H5119.6H12A—C12—H12B109.5
C6—C5—H5119.6C10—C12—H12C109.5
C5—C6—C7122.61 (19)H12A—C12—H12C109.5
C5—C6—C11117.8 (2)H12B—C12—H12C109.5
C2—N1—C1—C1i−147.0 (3)C11—C6—C7—C80.1 (3)
C1—N1—C2—C3−177.6 (2)C6—C7—C8—C9−0.9 (3)
N1—C2—C3—C5−12.4 (4)C7—C8—C9—C100.8 (4)
N1—C2—C3—C4167.0 (2)C8—C9—C10—C110.1 (3)
C11—N2—C4—C3−0.4 (4)C8—C9—C10—C12−178.7 (2)
C11—N2—C4—Cl1−179.41 (16)C4—N2—C11—C10179.5 (2)
C5—C3—C4—N20.1 (4)C4—N2—C11—C60.4 (3)
C2—C3—C4—N2−179.3 (2)C9—C10—C11—N2179.8 (2)
C5—C3—C4—Cl1179.03 (17)C12—C10—C11—N2−1.3 (3)
C2—C3—C4—Cl1−0.3 (3)C9—C10—C11—C6−1.0 (3)
C4—C3—C5—C60.3 (3)C12—C10—C11—C6177.9 (2)
C2—C3—C5—C6179.7 (2)C5—C6—C11—N20.1 (3)
C3—C5—C6—C7179.6 (2)C7—C6—C11—N2−180.0 (2)
C3—C5—C6—C11−0.4 (3)C5—C6—C11—C10−179.1 (2)
C5—C6—C7—C8−180.0 (2)C7—C6—C11—C100.9 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1a···N1ii0.992.593.299 (3)128

Symmetry codes: (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5727).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Liu, Z.-C., Wang, B.-D., Yang, Z.-Y., Li, T.-R. & Li, Y. (2010). Inorg. Chem. Commun.13, 606–608.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography