PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3219.
Published online 2010 November 20. doi:  10.1107/S160053681004688X
PMCID: PMC3011717

8-Chloro-5,5-dimethyl-5,6-dihydro­tetra­zolo[1,5-c]quinazoline

Abstract

In the title compound, C10H10ClN5, the tetra­zole ring and the phenyl ring make a dihedral angle of 7.7 (2)°. The hexa­hydro­pyrimidine ring adopts a screw-boat conformation. In the crystal, inter­molecular bifurcated N—H(...)(N,N) hydrogen bonds link the mol­ecules into [001] chains.

Related literature

For applications of tetra­zole derivatives, see: Upadhayaya et al. (2004 [triangle]); Poonian et al. (1976 [triangle]); Ismail et al. (2006 [triangle]); Mulwad & Kewat (2008 [triangle]); Uchida et al. (1989 [triangle]). For ring conformations, see: Boeyens (1978 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3219-scheme1.jpg

Experimental

Crystal data

  • C10H10ClN5
  • M r = 235.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3219-efi1.jpg
  • a = 6.8324 (16) Å
  • b = 21.532 (5) Å
  • c = 9.4337 (16) Å
  • β = 130.823 (11)°
  • V = 1050.2 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 100 K
  • 0.16 × 0.11 × 0.05 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.948, T max = 0.982
  • 9660 measured reflections
  • 2412 independent reflections
  • 1777 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.137
  • S = 1.12
  • 2412 reflections
  • 151 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681004688X/hb5733sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004688X/hb5733Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and CSY thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

A number of tetrazole derivatives were reported as to be antifungal agents (Upadhayaya et al., 2004), antiviral agents (Poonian et al., 1976), angiotensin II AT1 receptor antagonists (Ismail et al., 2006), antibacterial agents (Mulwad & Kewat, 2008) and anti-ulcer agents (Uchida et al., 1989). On the basis of these considerations, our particular attention was directed to synthesize some tetrazole derivatives.

The title compound is a three fused-ring structure (Fig. 1). The tetrazole ring and the phenyl ring make dihedral angle of 7.7 (2)°. The hexahydropyrimidine ring adopts a screw-boat conformation, with puckering amplitude Q = 0.308 (3) Å, θ = 61.8 (6)°, [var phi] = 270.4 (7)° (Boeyens, 1978). In the crystal structure, intermolecular bifurcated N5—H1N5···N1 and N5—H1N5···N2 hydrogen bonds link the molecules into chains along c axis (Fig. 2, Table 1).

Experimental

To a solution of 2-amino-4-chlorobenzonitrile (4.2 mmol) in N,N-dimethylformamide was added ammonium chloride (3 eq) and sodium azide (3 eq). The resulting reaction mixture was refluxed for 12 h. The completion of reaction was checked by TLC (100% EA). The reaction mixture was poured into ice-water after cooling to RT and acidified to give tetrazoles as a white mass. The resulting compound was then condensed with acetone to get the title compound: colourless plates were obtained by crystallization from acetone under slow evaporation (Mp. 501 K).

Refinement

The N-bound hydrogen atom was located from difference Fourier map and refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model [Uiso(H) = 1.2 or 1.5Ueq]. A rotating-group model were applied for methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of title compound, viewed down b axis, showing the molecules are linked into chains along c axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C10H10ClN5F(000) = 488
Mr = 235.68Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1888 reflections
a = 6.8324 (16) Åθ = 3.0–29.9°
b = 21.532 (5) ŵ = 0.34 mm1
c = 9.4337 (16) ÅT = 100 K
β = 130.823 (11)°Plate, colourless
V = 1050.2 (4) Å30.16 × 0.11 × 0.05 mm
Z = 4

Data collection

Bruker APEXII DUO CCD diffractometer2412 independent reflections
Radiation source: fine-focus sealed tube1777 reflections with I > 2σ(I)
graphiteRint = 0.066
[var phi] and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −8→8
Tmin = 0.948, Tmax = 0.982k = −27→27
9660 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.0361P)2 + 1.9098P] where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.68351 (15)0.62515 (4)0.46138 (11)0.0285 (2)
N10.0252 (5)0.85800 (13)−0.2050 (3)0.0225 (6)
N20.0079 (5)0.92121 (14)−0.2261 (3)0.0276 (6)
N30.1672 (5)0.94937 (13)−0.0661 (3)0.0248 (6)
N40.2938 (4)0.90385 (12)0.0634 (3)0.0192 (5)
N50.6368 (5)0.85848 (12)0.3484 (3)0.0210 (6)
C10.2056 (5)0.84885 (14)−0.0218 (4)0.0190 (6)
C20.3106 (5)0.79248 (14)0.0880 (4)0.0185 (6)
C30.2129 (6)0.73316 (15)0.0145 (4)0.0216 (7)
H3A0.07040.7285−0.11220.026*
C40.3259 (6)0.68153 (15)0.1280 (4)0.0234 (7)
H4A0.26130.64200.07970.028*
C50.5397 (6)0.69013 (15)0.3174 (4)0.0213 (6)
C60.6402 (6)0.74777 (15)0.3947 (4)0.0209 (6)
H6A0.78160.75180.52180.025*
C70.5276 (5)0.80012 (14)0.2800 (4)0.0176 (6)
C80.4845 (5)0.91539 (14)0.2689 (4)0.0189 (6)
C90.6573 (6)0.96910 (15)0.3100 (4)0.0271 (7)
H9A0.73580.96080.25690.041*
H9B0.78960.97420.44310.041*
H9C0.55611.00640.25610.041*
C100.3352 (6)0.92761 (16)0.3348 (4)0.0254 (7)
H10A0.22940.89230.30650.038*
H10B0.22750.96350.27180.038*
H10C0.45490.93470.46750.038*
H1N50.751 (8)0.8595 (18)0.467 (6)0.039 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0280 (4)0.0248 (4)0.0334 (4)0.0052 (3)0.0204 (3)0.0085 (4)
N10.0187 (12)0.0307 (16)0.0131 (12)0.0000 (10)0.0082 (10)0.0003 (11)
N20.0240 (13)0.0355 (17)0.0148 (12)0.0021 (12)0.0089 (11)0.0035 (12)
N30.0251 (13)0.0289 (15)0.0147 (12)0.0052 (11)0.0106 (11)0.0061 (11)
N40.0191 (12)0.0225 (14)0.0107 (11)0.0023 (10)0.0074 (10)0.0021 (10)
N50.0173 (12)0.0213 (14)0.0104 (12)−0.0010 (10)0.0029 (10)−0.0017 (10)
C10.0154 (13)0.0267 (16)0.0135 (13)−0.0013 (12)0.0088 (11)−0.0040 (12)
C20.0167 (13)0.0237 (17)0.0151 (13)0.0009 (12)0.0104 (11)−0.0009 (12)
C30.0182 (14)0.0282 (18)0.0166 (14)−0.0047 (12)0.0105 (12)−0.0053 (13)
C40.0237 (15)0.0227 (17)0.0253 (16)−0.0048 (13)0.0166 (13)−0.0063 (13)
C50.0214 (14)0.0236 (17)0.0257 (15)0.0044 (12)0.0184 (13)0.0044 (13)
C60.0178 (14)0.0259 (17)0.0165 (14)0.0015 (12)0.0101 (12)0.0001 (12)
C70.0162 (13)0.0204 (16)0.0171 (13)−0.0006 (11)0.0113 (11)−0.0016 (12)
C80.0174 (13)0.0207 (16)0.0135 (13)−0.0005 (12)0.0079 (11)0.0006 (12)
C90.0288 (16)0.0279 (18)0.0178 (14)−0.0080 (14)0.0122 (13)−0.0009 (13)
C100.0240 (15)0.0300 (19)0.0195 (15)0.0002 (13)0.0130 (13)−0.0006 (13)

Geometric parameters (Å, °)

Cl1—C51.739 (3)C3—H3A0.9300
N1—C11.326 (4)C4—C51.396 (4)
N1—N21.369 (4)C4—H4A0.9300
N2—N31.297 (4)C5—C61.374 (4)
N3—N41.349 (3)C6—C71.394 (4)
N4—C11.334 (4)C6—H6A0.9300
N4—C81.489 (3)C8—C91.511 (4)
N5—C71.386 (4)C8—C101.525 (4)
N5—C81.458 (4)C9—H9A0.9600
N5—H1N50.85 (4)C9—H9B0.9600
C1—C21.445 (4)C9—H9C0.9600
C2—C31.397 (4)C10—H10A0.9600
C2—C71.413 (4)C10—H10B0.9600
C3—C41.378 (4)C10—H10C0.9600
C1—N1—N2104.8 (2)C5—C6—C7119.2 (3)
N3—N2—N1111.6 (2)C5—C6—H6A120.4
N2—N3—N4105.5 (3)C7—C6—H6A120.4
C1—N4—N3109.3 (2)N5—C7—C6121.0 (3)
C1—N4—C8126.8 (2)N5—C7—C2119.8 (3)
N3—N4—C8123.7 (2)C6—C7—C2119.0 (3)
C7—N5—C8122.4 (2)N5—C8—N4104.6 (2)
C7—N5—H1N5113 (3)N5—C8—C9109.6 (2)
C8—N5—H1N5113 (3)N4—C8—C9109.5 (2)
N1—C1—N4108.8 (3)N5—C8—C10112.2 (2)
N1—C1—C2131.4 (3)N4—C8—C10108.1 (2)
N4—C1—C2119.8 (2)C9—C8—C10112.4 (3)
C3—C2—C7120.2 (3)C8—C9—H9A109.5
C3—C2—C1124.0 (3)C8—C9—H9B109.5
C7—C2—C1115.7 (3)H9A—C9—H9B109.5
C4—C3—C2120.6 (3)C8—C9—H9C109.5
C4—C3—H3A119.7H9A—C9—H9C109.5
C2—C3—H3A119.7H9B—C9—H9C109.5
C3—C4—C5118.3 (3)C8—C10—H10A109.5
C3—C4—H4A120.9C8—C10—H10B109.5
C5—C4—H4A120.9H10A—C10—H10B109.5
C6—C5—C4122.7 (3)C8—C10—H10C109.5
C6—C5—Cl1118.8 (2)H10A—C10—H10C109.5
C4—C5—Cl1118.5 (2)H10B—C10—H10C109.5
C1—N1—N2—N3−0.1 (3)C4—C5—C6—C7−0.8 (4)
N1—N2—N3—N40.4 (3)Cl1—C5—C6—C7179.5 (2)
N2—N3—N4—C1−0.7 (3)C8—N5—C7—C6−153.7 (3)
N2—N3—N4—C8−175.8 (2)C8—N5—C7—C231.3 (4)
N2—N1—C1—N4−0.3 (3)C5—C6—C7—N5−174.1 (3)
N2—N1—C1—C2179.9 (3)C5—C6—C7—C21.0 (4)
N3—N4—C1—N10.6 (3)C3—C2—C7—N5174.4 (3)
C8—N4—C1—N1175.6 (2)C1—C2—C7—N5−4.6 (4)
N3—N4—C1—C2−179.6 (2)C3—C2—C7—C6−0.7 (4)
C8—N4—C1—C2−4.6 (4)C1—C2—C7—C6−179.7 (2)
N1—C1—C2—C3−7.2 (5)C7—N5—C8—N4−38.5 (3)
N4—C1—C2—C3173.0 (3)C7—N5—C8—C9−155.9 (3)
N1—C1—C2—C7171.7 (3)C7—N5—C8—C1078.4 (3)
N4—C1—C2—C7−8.0 (4)C1—N4—C8—N525.7 (4)
C7—C2—C3—C40.2 (4)N3—N4—C8—N5−159.9 (2)
C1—C2—C3—C4179.2 (3)C1—N4—C8—C9143.2 (3)
C2—C3—C4—C5−0.1 (4)N3—N4—C8—C9−42.5 (4)
C3—C4—C5—C60.4 (4)C1—N4—C8—C10−94.0 (3)
C3—C4—C5—Cl1−179.9 (2)N3—N4—C8—C1080.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H1N5···N1i0.85 (4)2.35 (4)3.190 (3)173 (6)
N5—H1N5···N2i0.85 (4)2.57 (4)3.326 (3)150 (4)

Symmetry codes: (i) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5733).

References

  • Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct.8, 317–320.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Ismail, M. A. H., Barker, S., Alou El Ella, D. A., Abouzid, K. A. M., Toubar, R. A. & Todd, M. H. (2006). J. Med. Chem.46, 1526–1535. [PubMed]
  • Mulwad, V. V. & Kewat, V. P. (2008). Indian J. Het. Chem.17, 205–208.
  • Poonian, M. S., Nowoswiat, E. F., Blount, J. F. & Kramer, M. J. (1976). J. Med. Chem.19, 1017–1020. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Uchida, M., Komatsu, M., Morita, S., Kanbe, T., Yamasaki, K. & Nakagawa, K. (1989). Chem. Pharm. Bull.37, 958–961. [PubMed]
  • Upadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem.39, 575–592. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography