PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1656.
Published online 2010 November 24. doi:  10.1107/S1600536810048270
PMCID: PMC3011716

Monoclinic form of (cyanato-κN){2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-κ4 O,N,N′,O′}manganese(III)

Abstract

The title compound, [Mn(C16H14N2O2)(NCO)], is a monoclinic polymorph of the previously published ortho­rhom­bic form [Lu et al. (2006 [triangle]). Inorg. Chem. 45, 3538–3548]. The MnIII ion is chelated by a tetra­dentate Schiff base ligand and coordinated by the N atom of a cyanate ligand in a distorted square-pyramidal arrangement. In the crystal, there are short inter­molecular Mn(...)Ophenolate distances of 2.752 (3) Å between pairs of inversion-related mol­ecules.

Related literature

For the ortho­rhom­bic polymorph of the title compound, see: Lu et al. (2006 [triangle]). For related structures, see: Mikuriya et al. (1992 [triangle]); Li et al. (1997 [triangle]); Wang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1656-scheme1.jpg

Experimental

Crystal data

  • [Mn(C16H14N2O2)(NCO)]
  • M r = 363.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1656-efi1.jpg
  • a = 9.6399 (16) Å
  • b = 10.9133 (18) Å
  • c = 15.198 (3) Å
  • β = 97.826 (3)°
  • V = 1584.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 293 K
  • 0.37 × 0.35 × 0.23 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.743, T max = 0.828
  • 7377 measured reflections
  • 2698 independent reflections
  • 1769 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.131
  • S = 1.01
  • 2698 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048270/lh5164sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048270/lh5164Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

he author thanks the Doctoral Starting Fund of Shandong University of Technology for support.

supplementary crystallographic information

Comment

Because of their excellent chelating ability for metal atoms, the tetradentate schiff-base ligands containing N2O2 coordination unit have been widely studied in coordination chemistry field. Here, we report a Mn(III) complex based on tetradentate ligand N,N'-bis(salicylidene)-1,2-diphenyl-1,2-ethanediamine.

The molecular structure of the title complex is shown in Figure 1. The MnIII ion is involved in a distorted square-pyramidal arrangement by a N3O2 unit, in which the four basal sites are occupied by two N atoms and two O atoms from the Schiff base ligand, and the apical position is occupied by the N atom of a cyanato ligand. The bond distances can be compared to this those found in the related structures (Lu, et al., 2006; Mikuriya, et al., 1992; Li, et al., 1997; Wang, et al., 2008). The MnIII ion lies above the basal plane formed by N2O2 unit by 0.228 Å. The short intermolecular distance of Mn···Ophenolate 2.752 (3) Å indicates that there exsits weak interaction between the two complexes realted by inversion centers in the crystal.

Experimental

The synthesis of the title complex was carried out by mixing Mn(ClO4)2.6H2O (0.1mmol), NaNCO (0.1mmol) and the schiff-base ligand (0.1mmol) in methanol (20ml). The mixture was stirred for about half an hour at room temperature and then filtered and the filtrate allowed to partially evaporate in air for sevral days to produce crystals suitable for X-ray diffraction with a yield about 64%.

Refinement

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97 (Sheldrick, 2008) with C—H distances of 0.93 and 0.97 Å, respectively, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are not shown.

Crystal data

[Mn(C16H14N2O2)(NCO)]F(000) = 744
Mr = 363.25Dx = 1.523 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1289 reflections
a = 9.6399 (16) Åθ = 2.6–26.6°
b = 10.9133 (18) ŵ = 0.85 mm1
c = 15.198 (3) ÅT = 293 K
β = 97.826 (3)°Block, dark-brown
V = 1584.0 (5) Å30.37 × 0.35 × 0.23 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2698 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
graphiteRint = 0.047
[var phi] and ω scansθmax = 24.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.743, Tmax = 0.828k = −8→12
7377 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0695P)2] where P = (Fo2 + 2Fc2)/3
2698 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.10463 (6)0.63253 (5)0.52050 (4)0.0420 (2)
O1−0.0313 (3)0.7121 (2)0.57698 (17)0.0489 (7)
O20.1015 (3)0.4886 (2)0.58923 (17)0.0472 (7)
O30.5003 (4)0.6657 (5)0.6799 (3)0.1254 (17)
N10.0793 (3)0.7500 (3)0.4211 (2)0.0453 (8)
N20.2150 (3)0.5430 (3)0.4394 (2)0.0425 (8)
N30.2893 (4)0.7093 (3)0.5904 (2)0.0566 (10)
C1−0.1070 (4)0.8699 (4)0.4711 (3)0.0476 (10)
C2−0.1116 (4)0.8071 (4)0.5515 (3)0.0463 (10)
C3−0.2089 (5)0.8453 (4)0.6060 (3)0.0621 (13)
H3−0.21230.80540.65980.075*
C4−0.2991 (5)0.9395 (4)0.5824 (4)0.0715 (14)
H4−0.36380.96190.61960.086*
C5−0.2956 (5)1.0021 (4)0.5037 (4)0.0724 (15)
H5−0.35681.06670.48790.087*
C6−0.2003 (4)0.9674 (4)0.4492 (3)0.0605 (12)
H6−0.19741.00960.39630.073*
C7−0.0106 (4)0.8380 (4)0.4105 (3)0.0530 (11)
H7−0.01320.88490.35930.064*
C80.3143 (4)0.3997 (3)0.5504 (3)0.0415 (9)
C90.2170 (4)0.4207 (4)0.6109 (3)0.0423 (9)
C100.2394 (4)0.3634 (4)0.6929 (3)0.0503 (10)
H100.17700.37760.73340.060*
C110.3501 (4)0.2868 (4)0.7163 (3)0.0626 (13)
H110.36300.25030.77210.075*
C120.4445 (4)0.2632 (4)0.6557 (3)0.0638 (13)
H120.51950.21030.67090.077*
C130.4252 (4)0.3189 (4)0.5740 (3)0.0524 (11)
H130.48720.30250.53370.063*
C140.2980 (4)0.4541 (4)0.4634 (3)0.0451 (10)
H140.35110.42250.42200.054*
C150.1771 (4)0.7294 (4)0.3564 (3)0.0569 (12)
H15A0.26620.76860.37630.068*
H15B0.13950.76340.29920.068*
C160.1964 (4)0.5929 (4)0.3489 (3)0.0533 (11)
H16A0.11500.55650.31410.064*
H16B0.27800.57520.32010.064*
C170.3891 (6)0.6904 (5)0.6329 (3)0.0659 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0320 (4)0.0509 (4)0.0445 (4)0.0037 (3)0.0098 (3)0.0052 (3)
O10.0417 (16)0.0560 (18)0.0502 (17)0.0124 (14)0.0108 (13)0.0024 (13)
O20.0324 (16)0.0555 (17)0.0570 (19)0.0080 (13)0.0174 (13)0.0130 (13)
O30.051 (2)0.238 (5)0.081 (3)0.023 (3)−0.012 (2)−0.046 (3)
N10.0299 (18)0.057 (2)0.049 (2)0.0001 (16)0.0062 (15)0.0068 (16)
N20.0301 (18)0.057 (2)0.042 (2)0.0001 (16)0.0086 (14)0.0047 (16)
N30.043 (2)0.065 (3)0.059 (3)−0.0037 (19)0.0009 (19)−0.0029 (19)
C10.034 (2)0.045 (2)0.063 (3)−0.003 (2)0.0041 (19)0.001 (2)
C20.035 (2)0.046 (2)0.057 (3)−0.001 (2)0.004 (2)−0.010 (2)
C30.056 (3)0.063 (3)0.069 (3)0.008 (2)0.015 (2)−0.007 (2)
C40.053 (3)0.068 (3)0.095 (4)0.014 (3)0.014 (3)−0.007 (3)
C50.052 (3)0.054 (3)0.109 (5)0.015 (2)0.003 (3)−0.006 (3)
C60.044 (3)0.056 (3)0.080 (3)0.002 (2)0.001 (2)0.011 (2)
C70.038 (2)0.060 (3)0.059 (3)−0.007 (2)−0.001 (2)0.016 (2)
C80.028 (2)0.050 (2)0.048 (2)−0.0009 (17)0.0096 (17)−0.0012 (19)
C90.030 (2)0.048 (2)0.049 (3)−0.0021 (18)0.0077 (18)0.0004 (19)
C100.034 (2)0.068 (3)0.049 (3)0.000 (2)0.0102 (18)0.005 (2)
C110.040 (3)0.087 (4)0.059 (3)0.008 (2)0.004 (2)0.023 (3)
C120.034 (3)0.080 (3)0.078 (3)0.011 (2)0.008 (2)0.016 (3)
C130.028 (2)0.065 (3)0.066 (3)0.000 (2)0.013 (2)0.003 (2)
C140.026 (2)0.059 (3)0.052 (3)−0.0040 (19)0.0122 (18)−0.006 (2)
C150.040 (3)0.081 (3)0.051 (3)0.008 (2)0.013 (2)0.022 (2)
C160.039 (2)0.085 (3)0.037 (2)0.003 (2)0.0105 (18)0.005 (2)
C170.048 (3)0.100 (4)0.054 (3)−0.013 (3)0.021 (3)−0.029 (3)

Geometric parameters (Å, °)

Mn1—O11.874 (2)C5—C61.371 (6)
Mn1—O21.889 (3)C5—H50.9300
Mn1—N11.971 (3)C6—H60.9300
Mn1—N21.991 (3)C7—H70.9300
Mn1—N32.118 (4)C8—C131.394 (5)
O1—C21.320 (4)C8—C91.418 (5)
O2—C91.340 (4)C8—C141.438 (5)
O3—C171.235 (6)C9—C101.386 (5)
N1—C71.288 (5)C10—C111.364 (5)
N1—C151.469 (5)C10—H100.9300
N2—C141.280 (5)C11—C121.403 (6)
N2—C161.466 (5)C11—H110.9300
N3—C171.102 (6)C12—C131.372 (5)
C1—C61.403 (5)C12—H120.9300
C1—C21.408 (5)C13—H130.9300
C1—C71.437 (6)C14—H140.9300
C2—C31.397 (5)C15—C161.508 (6)
C3—C41.363 (6)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.382 (7)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
O1—Mn1—O293.85 (11)N1—C7—C1125.7 (4)
O1—Mn1—N191.64 (12)N1—C7—H7117.1
O2—Mn1—N1162.75 (13)C1—C7—H7117.1
O1—Mn1—N2167.59 (13)C13—C8—C9119.1 (4)
O2—Mn1—N289.12 (12)C13—C8—C14118.8 (3)
N1—Mn1—N282.24 (13)C9—C8—C14122.0 (3)
O1—Mn1—N3100.33 (13)O2—C9—C10119.5 (3)
O2—Mn1—N397.30 (13)O2—C9—C8122.1 (3)
N1—Mn1—N397.78 (14)C10—C9—C8118.3 (4)
N2—Mn1—N391.22 (14)C11—C10—C9122.1 (4)
C2—O1—Mn1130.4 (2)C11—C10—H10119.0
C9—O2—Mn1121.3 (2)C9—C10—H10119.0
C7—N1—C15120.9 (3)C10—C11—C12119.8 (4)
C7—N1—Mn1126.2 (3)C10—C11—H11120.1
C15—N1—Mn1112.9 (2)C12—C11—H11120.1
C14—N2—C16122.7 (3)C13—C12—C11119.5 (4)
C14—N2—Mn1124.2 (3)C13—C12—H12120.3
C16—N2—Mn1113.0 (2)C11—C12—H12120.3
C17—N3—Mn1145.7 (4)C12—C13—C8121.2 (4)
C6—C1—C2118.7 (4)C12—C13—H13119.4
C6—C1—C7118.8 (4)C8—C13—H13119.4
C2—C1—C7122.5 (4)N2—C14—C8124.2 (3)
O1—C2—C3118.3 (4)N2—C14—H14117.9
O1—C2—C1123.4 (3)C8—C14—H14117.9
C3—C2—C1118.2 (4)N1—C15—C16107.4 (3)
C4—C3—C2121.6 (5)N1—C15—H15A110.2
C4—C3—H3119.2C16—C15—H15A110.2
C2—C3—H3119.2N1—C15—H15B110.2
C3—C4—C5120.8 (5)C16—C15—H15B110.2
C3—C4—H4119.6H15A—C15—H15B108.5
C5—C4—H4119.6N2—C16—C15107.2 (3)
C6—C5—C4118.9 (4)N2—C16—H16A110.3
C6—C5—H5120.5C15—C16—H16A110.3
C4—C5—H5120.5N2—C16—H16B110.3
C5—C6—C1121.8 (5)C15—C16—H16B110.3
C5—C6—H6119.1H16A—C16—H16B108.5
C1—C6—H6119.1N3—C17—O3178.2 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5164).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, H., Zhong, Z. J., Duan, C.-Y., You, X.-Z., Mak, T. C. W. & Wu, B. (1997). J. Coord. Chem.41, 183–189.
  • Lu, Z. H., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem.45, 3538–3548. [PubMed]
  • Mikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 1466–1468.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, S.-B., Tang, K., Yang, B.-H. & Li, S. (2008). Acta Cryst. E64, m543. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography