PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3154.
Published online 2010 November 13. doi:  10.1107/S1600536810045885
PMCID: PMC3011711

2-(2-Chloro­pyridin-3-yl)-N-ethyl-4-methyl-1,3-oxazole-5-carboxamide

Abstract

In the title compound, C12H12ClN3O2, the dihedral angle between the aromatic rings is 8.42 (10)°. In the crystal, mol­ecules are linked by N—H(...)O hydrogen bonds, generating C(4) chains propagating in [001].

Related literature

For background to derivatives of oxazolyl carb­oxy­lic acids, see: Takechi et al. (2000 [triangle]); Lechel et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3154-scheme1.jpg

Experimental

Crystal data

  • C12H12ClN3O2
  • M r = 265.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3154-efi1.jpg
  • a = 8.2143 (12) Å
  • b = 14.545 (2) Å
  • c = 10.4360 (16) Å
  • β = 97.425 (3)°
  • V = 1236.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 296 K
  • 0.32 × 0.28 × 0.22 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.908, T max = 0.936
  • 6234 measured reflections
  • 2183 independent reflections
  • 1736 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.109
  • S = 1.07
  • 2183 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045885/hb5697sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045885/hb5697Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Derivatives of oxazolyl carboxylic acid are important heterocyclic compounds. They display a broad range of biological, medical and pharmacological properties (Takechi et al., 2000; Lechel et al., 2009). We report the crystal structure of the title compound (I) to determine the structure of the main product in the preparation of derivatives ofoxazolyl carboxylic acid. The molecular structure of (I) (Fig. 1) contains no crystallographically imposed symmetry. The pyridine and oxazole rings in each of the ligands are not coplanar, the dihedral angle formed by the least-squares planes of the benzene and pyrazole rings being equal to 8.8°. Analysis of the crystal packing of (I) shows the existence of N3—H3···O2 interactions, as shown in Fig. 2.

Experimental

The title compound was synthesized by 2-(2-chloropyridin-3-yl) -4-methyloxazole-5-carbonyl chloride with ethanamine in toluene. The crude products were purified by silica-gel column chromatography and then grown from dichloromethane to afford colorless blocks of (I). To a 100 ml flask ethanamine (0.24 g, 5.40 mmol),triethylamine (0.68 g, 6.75 mmol), 2-(2-chloropyridin-3-yl)-4-methyloxazole-5-carbonyl chloride (1.16 g, 4.50 mmol) and 45 ml toluene were added sequentially. The reaction mixture was reacted for 2 h. After separation through silica gel column chromatography (fluent: ethyl acetate/petroleum ether=1/5), The title compound was gained as a yellow solid (0.42 g, 58%).

Anal. Calcd for C12H12N3: C, 54.25; H, 4.55; N, 15.82. Found: C, 54.33; H, 4.54; N, 15.75. 1H NMR(CDCl3): 1.27 (t,3H, CH3), 2.61 (s,3H, Ar—CH3), 3.50 (m, 2H, CH2), 6.29 (br s, 1H, NH), 7.40 (dd, 1H, py—H), 8.42 (dd, 1H, py—H), 8.53 (dd, 1H, py—H).

Refinement

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C-Hdistances in the range 0.93–0.97Å and N—H distances of 0.86 Å, andincluded in the final refinement in the riding model approximation,with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
Fig. 2.
Crystal packing of (I).

Crystal data

C12H12ClN3O2F(000) = 552
Mr = 265.70Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2143 (12) ÅCell parameters from 2185 reflections
b = 14.545 (2) Åθ = 2.4–25.4°
c = 10.4360 (16) ŵ = 0.31 mm1
β = 97.425 (3)°T = 296 K
V = 1236.4 (3) Å3Block, colorless
Z = 40.32 × 0.28 × 0.22 mm

Data collection

Bruker SMART CCD diffractometer2183 independent reflections
Radiation source: fine-focus sealed tube1736 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −9→9
Tmin = 0.908, Tmax = 0.936k = −17→17
6234 measured reflectionsl = −12→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0583P)2 + 0.2339P] where P = (Fo2 + 2Fc2)/3
2183 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.52313 (8)1.15459 (4)0.30039 (6)0.0650 (2)
O10.81459 (15)0.89027 (8)0.35667 (12)0.0424 (3)
O20.91578 (18)0.72507 (9)0.12724 (13)0.0542 (4)
N10.6093 (2)1.15962 (11)0.54565 (19)0.0582 (5)
N20.6424 (2)0.96872 (10)0.21507 (15)0.0449 (4)
N30.9699 (2)0.72633 (10)0.34513 (15)0.0476 (4)
H30.95230.75300.41560.057*
C10.6202 (2)1.10823 (12)0.4431 (2)0.0457 (5)
C20.6806 (3)1.12864 (15)0.6593 (2)0.0625 (6)
H20.67331.16420.73240.075*
C30.7641 (3)1.04702 (15)0.6739 (2)0.0636 (6)
H3A0.81221.02780.75510.076*
C40.7752 (3)0.99428 (13)0.56647 (19)0.0525 (5)
H40.83200.93880.57440.063*
C50.7019 (2)1.02335 (12)0.44587 (18)0.0420 (4)
C60.7133 (2)0.96435 (12)0.33294 (18)0.0399 (4)
C70.8032 (2)0.84506 (11)0.23930 (18)0.0402 (4)
C80.6982 (2)0.89204 (12)0.15339 (18)0.0416 (4)
C90.6388 (3)0.87207 (15)0.0153 (2)0.0567 (6)
H9A0.71790.8936−0.03780.085*
H9B0.53590.9027−0.00910.085*
H9C0.62420.80700.00380.085*
C100.9008 (2)0.76014 (12)0.23233 (18)0.0412 (4)
C111.0747 (3)0.64501 (15)0.3517 (2)0.0627 (6)
H11A1.01090.59310.31490.075*
H11B1.16310.65540.30010.075*
C121.1446 (4)0.6227 (2)0.4837 (3)0.0857 (9)
H12A1.20370.67490.52200.129*
H12B1.21810.57150.48270.129*
H12C1.05800.60700.53330.129*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0845 (4)0.0471 (3)0.0613 (4)0.0194 (3)0.0012 (3)0.0078 (2)
O10.0535 (8)0.0366 (7)0.0360 (7)0.0063 (6)0.0015 (6)−0.0004 (5)
O20.0808 (10)0.0446 (8)0.0379 (8)0.0047 (7)0.0104 (7)−0.0043 (6)
N10.0718 (12)0.0405 (9)0.0626 (12)0.0066 (8)0.0098 (10)−0.0062 (8)
N20.0531 (10)0.0376 (8)0.0428 (9)0.0036 (7)0.0016 (8)0.0025 (7)
N30.0633 (10)0.0408 (9)0.0387 (9)0.0139 (7)0.0071 (8)0.0002 (7)
C10.0502 (11)0.0347 (10)0.0524 (12)0.0005 (8)0.0078 (9)0.0015 (8)
C20.0843 (16)0.0496 (12)0.0541 (14)0.0016 (12)0.0106 (12)−0.0126 (11)
C30.0910 (17)0.0517 (13)0.0461 (13)0.0102 (12)0.0011 (12)−0.0032 (10)
C40.0688 (14)0.0396 (10)0.0481 (12)0.0090 (9)0.0034 (10)−0.0018 (9)
C50.0474 (11)0.0339 (9)0.0453 (11)−0.0019 (8)0.0080 (9)0.0023 (8)
C60.0454 (10)0.0308 (9)0.0431 (11)0.0008 (7)0.0048 (9)0.0039 (7)
C70.0502 (11)0.0345 (9)0.0353 (10)−0.0022 (8)0.0029 (8)−0.0011 (7)
C80.0479 (11)0.0375 (10)0.0387 (10)−0.0033 (8)0.0031 (8)0.0016 (8)
C90.0672 (14)0.0549 (12)0.0442 (12)0.0043 (11)−0.0069 (10)−0.0020 (10)
C100.0500 (11)0.0348 (9)0.0392 (10)−0.0035 (8)0.0072 (9)−0.0006 (8)
C110.0796 (16)0.0500 (13)0.0578 (14)0.0237 (11)0.0068 (12)0.0004 (10)
C120.103 (2)0.0863 (18)0.0661 (17)0.0496 (16)0.0029 (15)0.0079 (14)

Geometric parameters (Å, °)

Cl1—C11.733 (2)C4—C51.389 (3)
O1—C61.364 (2)C4—H40.9300
O1—C71.383 (2)C5—C61.471 (3)
O2—C101.230 (2)C7—C81.347 (2)
N1—C11.318 (3)C7—C101.479 (3)
N1—C21.332 (3)C8—C91.489 (3)
N2—C61.293 (2)C9—H9A0.9600
N2—C81.395 (2)C9—H9B0.9600
N3—C101.333 (2)C9—H9C0.9600
N3—C111.459 (2)C11—C121.459 (3)
N3—H30.8600C11—H11A0.9700
C1—C51.404 (3)C11—H11B0.9700
C2—C31.370 (3)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.372 (3)C12—H12C0.9600
C3—H3A0.9300
C6—O1—C7104.17 (14)O1—C7—C10117.74 (15)
C1—N1—C2117.59 (18)C7—C8—N2108.60 (16)
C6—N2—C8105.37 (15)C7—C8—C9130.30 (18)
C10—N3—C11121.45 (17)N2—C8—C9121.08 (17)
C10—N3—H3119.3C8—C9—H9A109.5
C11—N3—H3119.3C8—C9—H9B109.5
N1—C1—C5124.39 (19)H9A—C9—H9B109.5
N1—C1—Cl1113.91 (15)C8—C9—H9C109.5
C5—C1—Cl1121.70 (15)H9A—C9—H9C109.5
N1—C2—C3123.3 (2)H9B—C9—H9C109.5
N1—C2—H2118.4O2—C10—N3123.63 (17)
C3—C2—H2118.4O2—C10—C7120.50 (17)
C2—C3—C4118.6 (2)N3—C10—C7115.86 (16)
C2—C3—H3A120.7C12—C11—N3112.48 (19)
C4—C3—H3A120.7C12—C11—H11A109.1
C3—C4—C5120.25 (19)N3—C11—H11A109.1
C3—C4—H4119.9C12—C11—H11B109.1
C5—C4—H4119.9N3—C11—H11B109.1
C4—C5—C1115.87 (18)H11A—C11—H11B107.8
C4—C5—C6118.92 (16)C11—C12—H12A109.5
C1—C5—C6125.21 (17)C11—C12—H12B109.5
N2—C6—O1113.63 (16)H12A—C12—H12B109.5
N2—C6—C5131.78 (17)C11—C12—H12C109.5
O1—C6—C5114.57 (16)H12A—C12—H12C109.5
C8—C7—O1108.22 (15)H12B—C12—H12C109.5
C8—C7—C10134.03 (17)
C2—N1—C1—C5−0.1 (3)C4—C5—C6—O1−7.8 (3)
C2—N1—C1—Cl1179.87 (17)C1—C5—C6—O1172.89 (16)
C1—N1—C2—C30.3 (4)C6—O1—C7—C8−0.41 (19)
N1—C2—C3—C40.0 (4)C6—O1—C7—C10179.86 (15)
C2—C3—C4—C5−0.5 (4)O1—C7—C8—N20.6 (2)
C3—C4—C5—C10.6 (3)C10—C7—C8—N2−179.76 (19)
C3—C4—C5—C6−178.8 (2)O1—C7—C8—C9−178.03 (19)
N1—C1—C5—C4−0.3 (3)C10—C7—C8—C91.6 (4)
Cl1—C1—C5—C4179.72 (15)C6—N2—C8—C7−0.5 (2)
N1—C1—C5—C6179.00 (19)C6—N2—C8—C9178.25 (18)
Cl1—C1—C5—C6−1.0 (3)C11—N3—C10—O21.9 (3)
C8—N2—C6—O10.2 (2)C11—N3—C10—C7−177.52 (18)
C8—N2—C6—C5−178.29 (19)C8—C7—C10—O211.7 (3)
C7—O1—C6—N20.1 (2)O1—C7—C10—O2−168.64 (17)
C7—O1—C6—C5178.89 (15)C8—C7—C10—N3−168.8 (2)
C4—C5—C6—N2170.7 (2)O1—C7—C10—N310.8 (2)
C1—C5—C6—N2−8.6 (3)C10—N3—C11—C12176.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.862.293.115 (2)161

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5697).

References

  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lechel, T., Lentz, D. & Reissig, H. U. (2009). Chem. Eur. J.15, 5432–5435. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Takechi, H., Oda, Y., Nishizono, N., Oda, K. & Machida, M. (2000). Chem. Pharm. Bull.48, 1702–1710. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography