PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3159.
Published online 2010 November 13. doi:  10.1107/S1600536810045927
PMCID: PMC3011709

N,N′-Di-tert-butyl-N′′-(2,6-difluoro­benzo­yl)phospho­ric triamide

Abstract

In the title compound, C15H24F2N3O2P, the phosphoryl and carbonyl groups adopt anti positions relative to each other. The P atom is in a tetra­hedral coordination environment and the environment of each N atom is essentially planar. In the crystal, adjacent mol­ecules are linked via N—H(...)O=P and N—H(...)O=C hydrogen bonds into an extended chain parallel to the a axis. The crystal studied was a non-merohedral twin with a minor twin component of 36.4 (1)%.

Related literature

Carbacyl­amido­phosphates with a C(O)NHP(O) skeleton have attracted attention because of their roles as O,O′-donor ligands for metal complexation, see: Gholivand et al. (2010 [triangle]). CELL_NOW (Sheldrick, 2008a [triangle]) was used to generate the components of the twin.

An external file that holds a picture, illustration, etc.
Object name is e-66-o3159-scheme1.jpg

Experimental

Crystal data

  • C15H24F2N3O2P
  • M r = 347.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3159-efi1.jpg
  • a = 9.8142 (12) Å
  • b = 10.2886 (13) Å
  • c = 10.6091 (16) Å
  • α = 117.171 (4)°
  • β = 98.636 (4)°
  • γ = 97.988 (3)°
  • V = 915.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 200 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART X2S benchtop CCD area-detector diffractometer
  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2008a [triangle]) T min = 0.948, T max = 0.965
  • 7847 measured reflections
  • 4225 independent reflections
  • 3525 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.121
  • S = 1.05
  • 4225 reflections
  • 224 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: GIS (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045927/ng5051sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045927/ng5051Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged. The authors wish to thank Bruker AXS, Inc. (Madison, WI) for the use of one of their SMART X2S benchtop instruments.

supplementary crystallographic information

Comment

Carbacylamidophosphates with a C(O)NHP(O) skeleton have attracted attention because of their roles as the O,O'-donor ligands for metal complexation (Gholivand et al., 2010).

Here, we report on the synthesis and crystal structure of title carbacylamidophosphate, P(O)[NHC(O)C6H3(2,6-F2)][NHC(CH3)3]2. The phosphoryl and carbonyl groups adopt the anti position to each other. The P atom has a slightly distorted tetrahedral configuration (Fig. 1). The bond angles around the P atom are in the range of 102.21 (9)° to 116.57 (10)°. The P1–N2 and P1–N3 bonds (1.631 (2) Å and 1.6301 (18) Å) are shorter than the P1–N1 bond (1.7142 (17) Å). The environment of the nitrogen atoms is essentially planar. The P═O bond length of 1.4761 (16) Å is standard for phosphoramidate compounds.

In the crystal structure, adjacent molecules are linked via N–H···O═ P and N–H···O═C hydrogen bonds, into an extended chain parallel to the a axis. The crystals were found to be twinned.

Experimental

2,6-F2—C6H3C(O)NHP(O)Cl2 has been synthesized from the reaction between phosphorus pentachloride (3.478 g, 16.7 mmol) and 2,6-difluorobenzamide (2.624 g, 16.7 mmol) in dry CCl4 at 358 K (3 h) and then the treatment of formic acid (0.769 g, 16.7 mmol) at ice bath temperature.

To a solution of 2,6-F2—C6H3C(O)NHP(O)Cl2 (0.500 g, 1.825 mmol) in dry CHCl3, a solution of tert-butylamine (0.534 g, 7.300 mmol) in dry CHCl3 (1:4 mole ratio) was added dropwise at 273 K. After 4 h of stirring, the solvent was evaporated at room temperature. The solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in DMF/CH3OH and n-C7H16 after a slow evaporation at room temperature. Colorless crystal of the title compound was mounted on a Mitogen mount with epoxy and data was collected at 200 K on a Bruker SMART X2S system with Mo Kα radiation. IR (KBr, cm-1): 3351 (NH), 3094 (NH), 2960, 2202, 1665 (C═O), 1474, 1398, 1239 (P═O), 1020, 878 (P—Namine), 779 (P—Namide).

Refinement

Structure was solved by direct methods and all non-hydrogen atoms were refined as being anisotropic by Fourier full matrix least squares on F2. Hydrogen atoms on various N atoms were found from a Fourier difference map and these N–H distances were then refined with the distance restraint N–H 0.87 (1) angstrom and with Uiso(H) = 1.2 Ueq(N). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with aromatic CH distances of 0.95 Å, Uiso(H) = 1.2Ueq(C) and with methyl C–H distances of 0.98 Å, Uiso(H) = 1.5Ueq(C).

Number of reflections and value of Rint were changed to indicate values given in .ABS, .PRP, and .LST files.

Plat 242 ALERT C - comment on C12 low Ueq in comparison to neighbors. C12 is central atom of a tert-butyl group and attached C atoms have higher Ueq values.

Figures

Fig. 1.
An ORTEP-style plot of title compound. Ellipsoids are given at the 50% probability level.

Crystal data

C15H24F2N3O2PZ = 2
Mr = 347.34F(000) = 368
Triclinic, P1Dx = 1.260 Mg m3
a = 9.8142 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2886 (13) ÅCell parameters from 2837 reflections
c = 10.6091 (16) Åθ = 2.2–27.9°
α = 117.171 (4)°µ = 0.18 mm1
β = 98.636 (4)°T = 200 K
γ = 97.988 (3)°Block, colorless
V = 915.6 (2) Å30.30 × 0.25 × 0.20 mm

Data collection

Bruker SMART X2S benchtop CCD area-detector diffractometer4225 independent reflections
Radiation source: micro focus sealed tube3525 reflections with I > 2σ(I)
doubly curved silicon crystalRint = 0.057
[var phi] and ω scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan (TWINABS; Sheldrick, 2008a)h = −12→12
Tmin = 0.948, Tmax = 0.965k = −13→12
7847 measured reflectionsl = 0→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0548P)2 + 0.3384P] where P = (Fo2 + 2Fc2)/3
4225 reflections(Δ/σ)max = 0.007
224 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = −0.26 e Å3

Special details

Experimental. Data refinement indicated a twin system and program Cell_Now (Sheldrick, 2008) was used to generate the two components of the twin (63.6 (1)/36.4 ratio). Data was integrated using SAINT and corrected for absorption using TWINABS (Shelrick, 2008).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.18621 (6)0.39181 (6)0.41180 (6)0.02191 (14)
F10.4134 (2)0.6847 (2)0.94162 (17)0.0611 (5)
F20.23506 (19)0.89470 (17)0.66107 (18)0.0523 (4)
O10.45094 (16)0.62402 (19)0.64132 (18)0.0363 (4)
O20.03152 (16)0.32970 (16)0.36977 (17)0.0305 (4)
N10.20980 (18)0.55903 (19)0.56848 (19)0.0241 (4)
H1N0.1375 (17)0.592 (3)0.595 (3)0.029*
N20.2528 (2)0.4227 (2)0.29337 (19)0.0276 (4)
H2N0.3378 (14)0.411 (3)0.293 (3)0.033*
N30.28600 (19)0.2910 (2)0.4441 (2)0.0260 (4)
H3N0.3739 (13)0.318 (3)0.449 (3)0.031*
C10.3611 (3)0.7959 (3)0.9332 (3)0.0404 (6)
C20.3480 (4)0.9159 (4)1.0587 (3)0.0597 (9)
H2A0.37670.92161.15110.072*
C30.2927 (4)1.0271 (4)1.0475 (4)0.0675 (10)
H3A0.28071.10871.13270.081*
C40.2544 (3)1.0216 (3)0.9142 (4)0.0593 (9)
H4A0.21831.09950.90690.071*
C50.2699 (3)0.8998 (3)0.7919 (3)0.0386 (6)
C60.3228 (2)0.7840 (2)0.7961 (2)0.0283 (5)
C70.3352 (2)0.6488 (2)0.6613 (2)0.0243 (4)
C80.1874 (3)0.4811 (3)0.1991 (2)0.0353 (5)
C90.1621 (4)0.6356 (3)0.2928 (3)0.0580 (9)
H9A0.25180.70420.35980.087*
H9B0.09400.62750.34910.087*
H9C0.12410.67470.22970.087*
C100.0477 (3)0.3691 (4)0.0967 (3)0.0569 (8)
H10A−0.02270.37090.15360.085*
H10B0.06400.26770.04780.085*
H10C0.01260.39720.02340.085*
C110.2913 (4)0.4907 (4)0.1095 (3)0.0535 (7)
H11A0.38090.56110.17500.080*
H11B0.25150.52630.04390.080*
H11C0.30840.39110.05180.080*
C120.2566 (3)0.1929 (3)0.5095 (3)0.0336 (5)
C130.1325 (3)0.0588 (3)0.4049 (4)0.0579 (8)
H13A0.15330.00730.30880.087*
H13B0.04600.09450.39560.087*
H13C0.1188−0.01120.44330.087*
C140.2251 (5)0.2791 (4)0.6581 (4)0.0677 (10)
H14A0.30570.36420.72320.102*
H14B0.20930.21230.69970.102*
H14C0.14000.31650.64700.102*
C150.3893 (3)0.1343 (4)0.5243 (4)0.0525 (7)
H15A0.40900.08020.42800.079*
H15B0.37420.06610.56450.079*
H15C0.47010.21910.58980.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0176 (2)0.0218 (2)0.0242 (3)0.00825 (19)0.00585 (19)0.0082 (2)
F10.0786 (14)0.0696 (11)0.0426 (9)0.0253 (10)0.0115 (8)0.0322 (9)
F20.0626 (11)0.0417 (8)0.0565 (10)0.0198 (8)0.0103 (8)0.0264 (8)
O10.0199 (7)0.0431 (9)0.0381 (9)0.0093 (7)0.0107 (7)0.0117 (7)
O20.0185 (7)0.0288 (7)0.0359 (8)0.0083 (6)0.0062 (6)0.0083 (7)
N10.0179 (8)0.0251 (8)0.0258 (8)0.0100 (7)0.0080 (7)0.0073 (7)
N20.0238 (9)0.0369 (10)0.0278 (9)0.0147 (8)0.0093 (8)0.0174 (8)
N30.0190 (9)0.0280 (9)0.0367 (10)0.0111 (7)0.0116 (8)0.0173 (8)
C10.0370 (14)0.0419 (13)0.0338 (12)0.0027 (11)0.0089 (10)0.0131 (11)
C20.0572 (19)0.067 (2)0.0259 (13)0.0018 (16)0.0120 (12)0.0022 (13)
C30.061 (2)0.0446 (17)0.0517 (18)0.0063 (15)0.0210 (16)−0.0140 (14)
C40.0560 (19)0.0317 (13)0.067 (2)0.0160 (13)0.0164 (16)0.0030 (14)
C50.0337 (13)0.0274 (11)0.0418 (13)0.0036 (10)0.0092 (11)0.0072 (10)
C60.0205 (9)0.0265 (10)0.0276 (10)0.0022 (8)0.0075 (8)0.0052 (8)
C70.0210 (10)0.0264 (10)0.0252 (10)0.0067 (8)0.0083 (8)0.0112 (8)
C80.0437 (14)0.0373 (12)0.0308 (11)0.0163 (11)0.0077 (10)0.0198 (10)
C90.087 (3)0.0501 (16)0.0516 (16)0.0393 (17)0.0195 (16)0.0298 (14)
C100.0501 (18)0.0689 (19)0.0498 (16)0.0046 (14)−0.0106 (13)0.0366 (15)
C110.068 (2)0.0642 (18)0.0426 (15)0.0200 (16)0.0189 (14)0.0346 (14)
C120.0338 (13)0.0360 (12)0.0445 (13)0.0173 (10)0.0172 (10)0.0259 (11)
C130.0462 (18)0.0477 (16)0.087 (2)0.0019 (13)0.0107 (16)0.0424 (17)
C140.108 (3)0.075 (2)0.0601 (19)0.055 (2)0.052 (2)0.0477 (18)
C150.0503 (17)0.0584 (17)0.0721 (19)0.0294 (14)0.0168 (15)0.0456 (16)

Geometric parameters (Å, °)

P1—O21.4761 (16)C8—C91.522 (4)
P1—N31.6301 (18)C8—C101.536 (4)
P1—N21.631 (2)C9—H9A0.9800
P1—N11.7142 (17)C9—H9B0.9800
F1—C11.351 (3)C9—H9C0.9800
F2—C51.353 (3)C10—H10A0.9800
O1—C71.226 (2)C10—H10B0.9800
N1—C71.352 (3)C10—H10C0.9800
N1—H1N0.858 (10)C11—H11A0.9800
N2—C81.495 (3)C11—H11B0.9800
N2—H2N0.860 (10)C11—H11C0.9800
N3—C121.485 (3)C12—C141.520 (4)
N3—H3N0.856 (10)C12—C151.526 (3)
C1—C21.381 (4)C12—C131.532 (4)
C1—C61.390 (4)C13—H13A0.9800
C2—C31.377 (5)C13—H13B0.9800
C2—H2A0.9500C13—H13C0.9800
C3—C41.381 (6)C14—H14A0.9800
C3—H3A0.9500C14—H14B0.9800
C4—C51.380 (4)C14—H14C0.9800
C4—H4A0.9500C15—H15A0.9800
C5—C61.381 (3)C15—H15B0.9800
C6—C71.509 (3)C15—H15C0.9800
C8—C111.517 (4)
O2—P1—N3116.57 (10)C8—C9—H9A109.5
O2—P1—N2115.98 (9)C8—C9—H9B109.5
N3—P1—N2102.21 (9)H9A—C9—H9B109.5
O2—P1—N1103.22 (8)C8—C9—H9C109.5
N3—P1—N1109.37 (9)H9A—C9—H9C109.5
N2—P1—N1109.43 (10)H9B—C9—H9C109.5
C7—N1—P1126.27 (14)C8—C10—H10A109.5
C7—N1—H1N113.8 (16)C8—C10—H10B109.5
P1—N1—H1N119.9 (16)H10A—C10—H10B109.5
C8—N2—P1127.01 (16)C8—C10—H10C109.5
C8—N2—H2N118.1 (19)H10A—C10—H10C109.5
P1—N2—H2N114.6 (19)H10B—C10—H10C109.5
C12—N3—P1128.21 (15)C8—C11—H11A109.5
C12—N3—H3N114.1 (19)C8—C11—H11B109.5
P1—N3—H3N114.8 (18)H11A—C11—H11B109.5
F1—C1—C2119.7 (3)C8—C11—H11C109.5
F1—C1—C6117.6 (2)H11A—C11—H11C109.5
C2—C1—C6122.7 (3)H11B—C11—H11C109.5
C3—C2—C1118.8 (3)N3—C12—C14111.4 (2)
C3—C2—H2A120.6N3—C12—C15106.2 (2)
C1—C2—H2A120.6C14—C12—C15110.4 (2)
C2—C3—C4120.9 (3)N3—C12—C13109.3 (2)
C2—C3—H3A119.5C14—C12—C13110.8 (3)
C4—C3—H3A119.5C15—C12—C13108.5 (2)
C3—C4—C5118.3 (3)C12—C13—H13A109.5
C3—C4—H4A120.9C12—C13—H13B109.5
C5—C4—H4A120.9H13A—C13—H13B109.5
F2—C5—C4118.7 (3)C12—C13—H13C109.5
F2—C5—C6117.9 (2)H13A—C13—H13C109.5
C4—C5—C6123.4 (3)H13B—C13—H13C109.5
C5—C6—C1116.0 (2)C12—C14—H14A109.5
C5—C6—C7123.1 (2)C12—C14—H14B109.5
C1—C6—C7120.9 (2)H14A—C14—H14B109.5
O1—C7—N1124.00 (18)C12—C14—H14C109.5
O1—C7—C6121.48 (18)H14A—C14—H14C109.5
N1—C7—C6114.52 (17)H14B—C14—H14C109.5
N2—C8—C11106.6 (2)C12—C15—H15A109.5
N2—C8—C9110.46 (19)C12—C15—H15B109.5
C11—C8—C9110.4 (2)H15A—C15—H15B109.5
N2—C8—C10109.0 (2)C12—C15—H15C109.5
C11—C8—C10109.5 (2)H15A—C15—H15C109.5
C9—C8—C10110.8 (2)H15B—C15—H15C109.5
O2—P1—N1—C7169.82 (18)C4—C5—C6—C7178.0 (2)
N3—P1—N1—C745.1 (2)F1—C1—C6—C5−180.0 (2)
N2—P1—N1—C7−66.1 (2)C2—C1—C6—C5−0.3 (4)
O2—P1—N2—C838.0 (2)F1—C1—C6—C72.0 (3)
N3—P1—N2—C8165.93 (18)C2—C1—C6—C7−178.3 (2)
N1—P1—N2—C8−78.2 (2)P1—N1—C7—O13.1 (3)
O2—P1—N3—C12−33.9 (2)P1—N1—C7—C6−175.92 (16)
N2—P1—N3—C12−161.48 (19)C5—C6—C7—O1114.8 (3)
N1—P1—N3—C1282.6 (2)C1—C6—C7—O1−67.3 (3)
F1—C1—C2—C3−179.2 (3)C5—C6—C7—N1−66.1 (3)
C6—C1—C2—C31.1 (5)C1—C6—C7—N1111.8 (2)
C1—C2—C3—C4−1.8 (5)P1—N2—C8—C11179.62 (18)
C2—C3—C4—C51.5 (5)P1—N2—C8—C959.7 (3)
C3—C4—C5—F2−178.8 (3)P1—N2—C8—C10−62.3 (3)
C3—C4—C5—C6−0.6 (4)P1—N3—C12—C14−55.9 (3)
F2—C5—C6—C1178.2 (2)P1—N3—C12—C15−176.14 (19)
C4—C5—C6—C10.0 (4)P1—N3—C12—C1367.0 (3)
F2—C5—C6—C7−3.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (1)1.96 (1)2.808 (2)172 (2)
N2—H2N···O1ii0.86 (1)2.22 (1)3.042 (2)160 (2)
N3—H3N···O1ii0.86 (1)2.22 (2)3.008 (2)152 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5051).

References

  • Bruker (2009). GIS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318–2324.
  • Sheldrick, G. M. (2008a). CELL_NOW and TWINABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography