PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3202.
Published online 2010 November 17. doi:  10.1107/S1600536810046465
PMCID: PMC3011705

(Z)-3-[(4-Eth­oxy­phen­yl)(hy­droxy)methyl­idene]-1-isopropyl­pyrrolidine-2,4-dione

Abstract

In the title compound, C16H19NO4, a potent new herbicide, the dihedral angle between the benzene and pyrrolidine rings is 11.09 (8)°. Intra­molecular O—H(...)O and C—H(...)O hydrogen bonds are observed.

Related literature

For the anti­biotic activity of 3-acyl­pyrrolidine-2,4-dione compounds, see: van der Baan et al. (1978 [triangle]); Holzapfel et al. (1970 [triangle]); Mackellar et al. (1971 [triangle]); Rinehart et al. (1963 [triangle]); Sticking (1959 [triangle]); Wu et al. (2002 [triangle]). For a related structure, see: Ellis & Spek (2001 [triangle]). For the synthesis, see: Matsuo et al. (1980 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3202-scheme1.jpg

Experimental

Crystal data

  • C16H19NO4
  • M r = 289.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3202-efi1.jpg
  • a = 11.3390 (15) Å
  • b = 5.3830 (8) Å
  • c = 12.0490 (18) Å
  • β = 91.581 (7)°
  • V = 735.16 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 113 K
  • 0.42 × 0.26 × 0.10 mm

Data collection

  • Rigaku Saturn724 CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009 [triangle]) T min = 0.962, T max = 0.991
  • 9386 measured reflections
  • 1933 independent reflections
  • 1668 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.079
  • S = 1.03
  • 1933 reflections
  • 193 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: CrystalClear (Rigaku, 2009 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) [triangle]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) [triangle]; molecular graphics: CrystalStructure (Rigaku, 2009 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046465/is2629sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046465/is2629Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant No. 20772066).

supplementary crystallographic information

Comment

Many compounds containing the 3-acylpyrrolidine-2,4-dione moiety are novel heterocyclic compounds with antibiotic activity. Some of them are tenuazonic (Sticking, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Mackellar et al., 1971), malonomycin (Baan et al., 1978), alpha-cyclopiazonic acid (Sticking, 1959) and bata-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid moiety as a tricarbonylmethane structure and their hydrogen chemical shift of the enol hydroxy is about 11 p.p.m. (Wu et al., 2002). On the other hand, most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their bioactivity. Up to now, we have synthesized a series of 3-(un)substituted aroyl-1-benzylpyrrolidine-2,4-dione compounds and some of them have high herbicidal activity. The structure of the title compound, (I), helps us to investigate the relationship between structure and herbicidal activity.

The molecular structure of (I) is shown in Fig. 1. Atom H1A, involved in intramolecular hydrogen bonding between O1 and O3, was assigned to O1 rather than to O2, based on bond lengths. The C3—O2 distance is 1.267 (2) Å, which is longer than the C5—O3 distance of 1.222 (2) Å. In contrast, the C1—O1 distance [1.324 (2) Å] is intermediate between the normal carbonyl bond and the C—O single bond length (Allen et al. 1987). A similar situation has been found in 3-(1-hydroxyethylidene)-1- phenylpyrrolidine-2,4-dione, which contains the same pyrrolidine skeleton (Ellis & Spek, 2001).

Experimental

The title compound was obtained according to the reported procedure of Matsuo et al. (1980). Colourless single crystals were obtained by recrystallization of the title compound from petroleum ether and ethyl acetate.

Refinement

H atoms were placed in calculated positions, with C—H = 0.95–1.00 Å and O—H = 0.84 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). Friedel pairs were merged before the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C16H19NO4F(000) = 308
Mr = 289.32Dx = 1.307 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 2865 reflections
a = 11.3390 (15) Åθ = 1.8–27.9°
b = 5.3830 (8) ŵ = 0.09 mm1
c = 12.0490 (18) ÅT = 113 K
β = 91.581 (7)°Prism, colorless
V = 735.16 (18) Å30.42 × 0.26 × 0.10 mm
Z = 2

Data collection

Rigaku Saturn724 CCD diffractometer1933 independent reflections
Radiation source: rotating anode1668 reflections with I > 2σ(I)
multilayerRint = 0.040
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 1.8°
ω scansh = −14→14
Absorption correction: multi-scan (CrystalClear; Rigaku, 2009)k = −7→7
Tmin = 0.962, Tmax = 0.991l = −15→15
9386 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3
1933 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.70417 (9)0.6075 (2)0.35972 (9)0.0257 (3)
H1A0.74350.60200.30170.039*
O20.84775 (9)0.4899 (2)0.21845 (9)0.0251 (3)
O30.89526 (9)−0.0316 (2)0.53336 (9)0.0251 (3)
O40.48151 (10)0.4135 (3)0.82015 (9)0.0299 (3)
N10.96813 (11)0.1603 (3)0.26539 (10)0.0203 (3)
C10.74116 (13)0.4313 (3)0.42897 (13)0.0193 (3)
C20.83157 (13)0.2766 (3)0.39424 (13)0.0186 (3)
C30.88176 (13)0.3211 (3)0.28521 (13)0.0192 (3)
C40.99039 (13)−0.0049 (3)0.35867 (12)0.0204 (3)
H4A1.07170.01650.38920.024*
H4B0.9791−0.18050.33640.024*
C50.89965 (13)0.0726 (3)0.44344 (13)0.0192 (4)
C60.67596 (12)0.4261 (3)0.53246 (13)0.0188 (3)
C70.59784 (13)0.6206 (3)0.55394 (13)0.0220 (4)
H70.59040.75370.50240.026*
C80.53130 (13)0.6236 (3)0.64833 (13)0.0233 (4)
H80.47860.75700.66120.028*
C90.54203 (13)0.4304 (4)0.72421 (13)0.0227 (4)
C100.61937 (14)0.2358 (3)0.70400 (14)0.0248 (4)
H100.62660.10290.75560.030*
C110.68552 (14)0.2340 (3)0.60987 (14)0.0236 (4)
H110.73830.10040.59750.028*
C120.39293 (16)0.5968 (4)0.83947 (16)0.0361 (5)
H12A0.33440.60010.77690.043*
H12B0.42920.76350.84660.043*
C130.3340 (2)0.5264 (5)0.94565 (16)0.0554 (7)
H13A0.29920.36050.93770.067*
H13B0.27190.64720.96120.067*
H13C0.39260.52581.00700.067*
C141.04354 (13)0.1741 (3)0.16876 (13)0.0222 (4)
H141.00840.29900.11600.027*
C151.16687 (15)0.2627 (5)0.20292 (15)0.0356 (5)
H15A1.16140.42200.24180.043*
H15B1.21410.28340.13660.043*
H15C1.20450.13970.25230.043*
C161.0475 (2)−0.0729 (5)0.10959 (16)0.0481 (6)
H16A1.0895−0.19420.15670.058*
H16B1.0888−0.05360.03970.058*
H16C0.9669−0.13130.09390.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0261 (6)0.0265 (7)0.0247 (6)0.0059 (5)0.0053 (5)0.0076 (6)
O20.0245 (6)0.0277 (7)0.0231 (6)0.0011 (5)0.0015 (4)0.0074 (6)
O30.0269 (6)0.0281 (7)0.0206 (6)0.0076 (5)0.0045 (4)0.0060 (6)
O40.0266 (6)0.0393 (8)0.0242 (6)0.0102 (6)0.0078 (5)0.0036 (6)
N10.0208 (6)0.0248 (8)0.0155 (6)0.0013 (6)0.0028 (5)0.0015 (6)
C10.0176 (7)0.0179 (9)0.0223 (8)−0.0034 (6)−0.0023 (6)0.0004 (7)
C20.0179 (7)0.0206 (9)0.0174 (8)−0.0034 (6)0.0008 (6)0.0015 (7)
C30.0180 (7)0.0205 (9)0.0191 (8)−0.0042 (7)−0.0010 (6)0.0007 (7)
C40.0228 (7)0.0208 (9)0.0176 (7)0.0019 (7)0.0028 (6)0.0019 (7)
C50.0194 (7)0.0186 (9)0.0196 (8)−0.0019 (6)0.0002 (6)−0.0022 (6)
C60.0154 (7)0.0198 (8)0.0213 (7)−0.0010 (7)0.0008 (6)−0.0005 (7)
C70.0218 (7)0.0205 (9)0.0235 (8)0.0005 (7)−0.0006 (6)0.0019 (8)
C80.0209 (8)0.0234 (9)0.0256 (9)0.0047 (7)0.0008 (6)−0.0038 (8)
C90.0170 (7)0.0294 (9)0.0219 (8)−0.0005 (7)0.0028 (6)−0.0007 (8)
C100.0247 (8)0.0241 (10)0.0258 (9)0.0038 (7)0.0043 (7)0.0048 (8)
C110.0200 (8)0.0233 (9)0.0277 (9)0.0032 (7)0.0044 (7)0.0018 (8)
C120.0312 (9)0.0451 (12)0.0326 (10)0.0143 (9)0.0100 (8)−0.0009 (10)
C130.0514 (13)0.0781 (19)0.0381 (12)0.0272 (13)0.0241 (10)0.0097 (13)
C140.0225 (8)0.0282 (10)0.0162 (8)−0.0014 (7)0.0039 (6)0.0007 (7)
C150.0266 (9)0.0562 (14)0.0244 (9)−0.0101 (9)0.0047 (7)−0.0001 (10)
C160.0606 (14)0.0485 (14)0.0366 (11)−0.0181 (12)0.0245 (10)−0.0199 (11)

Geometric parameters (Å, °)

O1—C11.324 (2)C8—H80.9500
O1—H1A0.8400C9—C101.392 (2)
O2—C31.2665 (19)C10—C111.377 (2)
O3—C51.2222 (19)C10—H100.9500
O4—C91.3635 (18)C11—H110.9500
O4—C121.432 (2)C12—C131.508 (3)
N1—C31.334 (2)C12—H12A0.9900
N1—C41.450 (2)C12—H12B0.9900
N1—C141.4654 (18)C13—H13A0.9800
C1—C21.394 (2)C13—H13B0.9800
C1—C61.467 (2)C13—H13C0.9800
C2—C51.459 (2)C14—C161.510 (3)
C2—C31.466 (2)C14—C151.523 (2)
C4—C51.528 (2)C14—H141.0000
C4—H4A0.9900C15—H15A0.9800
C4—H4B0.9900C15—H15B0.9800
C6—C111.395 (2)C15—H15C0.9800
C6—C71.400 (2)C16—H16A0.9800
C7—C81.382 (2)C16—H16B0.9800
C7—H70.9500C16—H16C0.9800
C8—C91.388 (2)
C1—O1—H1A109.5C11—C10—H10119.7
C9—O4—C12117.63 (14)C9—C10—H10119.7
C3—N1—C4111.86 (12)C10—C11—C6120.77 (16)
C3—N1—C14123.82 (14)C10—C11—H11119.6
C4—N1—C14123.67 (12)C6—C11—H11119.6
O1—C1—C2117.49 (14)O4—C12—C13107.10 (18)
O1—C1—C6113.02 (13)O4—C12—H12A110.3
C2—C1—C6129.47 (14)C13—C12—H12A110.3
C1—C2—C5135.48 (14)O4—C12—H12B110.3
C1—C2—C3118.59 (14)C13—C12—H12B110.3
C5—C2—C3105.84 (13)H12A—C12—H12B108.5
O2—C3—N1124.35 (14)C12—C13—H13A109.5
O2—C3—C2124.57 (14)C12—C13—H13B109.5
N1—C3—C2111.08 (13)H13A—C13—H13B109.5
N1—C4—C5104.16 (13)C12—C13—H13C109.5
N1—C4—H4A110.9H13A—C13—H13C109.5
C5—C4—H4A110.9H13B—C13—H13C109.5
N1—C4—H4B110.9N1—C14—C16110.85 (14)
C5—C4—H4B110.9N1—C14—C15110.65 (12)
H4A—C4—H4B108.9C16—C14—C15111.34 (16)
O3—C5—C2132.20 (15)N1—C14—H14108.0
O3—C5—C4120.79 (15)C16—C14—H14108.0
C2—C5—C4107.01 (13)C15—C14—H14108.0
C11—C6—C7117.94 (15)C14—C15—H15A109.5
C11—C6—C1123.43 (14)C14—C15—H15B109.5
C7—C6—C1118.61 (14)H15A—C15—H15B109.5
C8—C7—C6121.55 (16)C14—C15—H15C109.5
C8—C7—H7119.2H15A—C15—H15C109.5
C6—C7—H7119.2H15B—C15—H15C109.5
C7—C8—C9119.57 (16)C14—C16—H16A109.5
C7—C8—H8120.2C14—C16—H16B109.5
C9—C8—H8120.2H16A—C16—H16B109.5
O4—C9—C8124.84 (15)C14—C16—H16C109.5
O4—C9—C10115.63 (15)H16A—C16—H16C109.5
C8—C9—C10119.53 (15)H16B—C16—H16C109.5
C11—C10—C9120.63 (16)
O1—C1—C2—C5177.26 (17)C2—C1—C6—C11−9.0 (2)
C6—C1—C2—C5−4.6 (3)O1—C1—C6—C7−9.19 (19)
O1—C1—C2—C31.3 (2)C2—C1—C6—C7172.57 (16)
C6—C1—C2—C3179.52 (15)C11—C6—C7—C8−0.3 (2)
C4—N1—C3—O2177.77 (14)C1—C6—C7—C8178.19 (14)
C14—N1—C3—O26.7 (2)C6—C7—C8—C90.3 (2)
C4—N1—C3—C2−2.23 (18)C12—O4—C9—C85.8 (2)
C14—N1—C3—C2−173.26 (13)C12—O4—C9—C10−174.26 (16)
C1—C2—C3—O2−1.0 (2)C7—C8—C9—O4179.75 (15)
C5—C2—C3—O2−178.00 (14)C7—C8—C9—C10−0.2 (2)
C1—C2—C3—N1179.02 (14)O4—C9—C10—C11−179.68 (14)
C5—C2—C3—N12.00 (17)C8—C9—C10—C110.3 (2)
C3—N1—C4—C51.48 (17)C9—C10—C11—C6−0.4 (2)
C14—N1—C4—C5172.53 (14)C7—C6—C11—C100.4 (2)
C1—C2—C5—O32.1 (3)C1—C6—C11—C10−178.04 (14)
C3—C2—C5—O3178.34 (17)C9—O4—C12—C13176.02 (16)
C1—C2—C5—C4−177.28 (17)C3—N1—C14—C16−129.11 (18)
C3—C2—C5—C4−1.00 (16)C4—N1—C14—C1660.9 (2)
N1—C4—C5—O3−179.62 (14)C3—N1—C14—C15106.86 (18)
N1—C4—C5—C2−0.19 (16)C4—N1—C14—C15−63.1 (2)
O1—C1—C6—C11169.26 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.841.682.4701 (16)155
C11—H11···O30.952.082.945 (2)150

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2629).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Baan, J. L. van der, Barnick, J. W. F. K. & Bickelhaupt, F. (1978). Tetrahedron, 34, 223–231.
  • Ellis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433–434. [PubMed]
  • Holzapfel, C. W., Hutchison, R. D. & Wilkins, D. C. (1970). Tetrahedron, 26, 5239–5246. [PubMed]
  • Mackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J., Branfman, A. R. & Rinehart, K. L. Jr (1971). J. Am. Chem. Soc.93, 4943–4945. [PubMed]
  • Matsuo, K., Kitaguchi, I., Takata, Y. & Tanaka, K. (1980). Chem. Pharm. Bull.28, 2494–2502. [PubMed]
  • Rigaku (2009). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  • Rinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. & Krauss, D. (1963). J. Am. Chem. Soc.85, 4038–4039.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sticking, C. E. (1959). Biochem. J.72, 332–334.
  • Wu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem.45, 2222–2228. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography