PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3266.
Published online 2010 November 24. doi:  10.1107/S1600536810047811
PMCID: PMC3011703

2,6-Dibromo-4-butyl­anilinium chloride

Abstract

In the crystal structure of the title salt, C10H14Br2N+·Cl, the organic cations and chloride anions are linked into one-dimensional chains parallel to the a axis by N—H(...)Cl and N—H(...)Br hydrogen bonds.

Related literature

For general background to supra­molecular self-assembly chemisty, see: Lehn Lehn (1995 [triangle]); Scheiner (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3266-scheme1.jpg

Experimental

Crystal data

  • C10H14Br2N+·Cl
  • M r = 343.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3266-efi1.jpg
  • a = 4.9785 (10) Å
  • b = 8.7844 (18) Å
  • c = 14.898 (3) Å
  • α = 86.29 (3)°
  • β = 87.58 (3)°
  • γ = 87.17 (3)°
  • V = 648.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.42 mm−1
  • T = 298 K
  • 0.10 × 0.03 × 0.03 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.910, T max = 1.000
  • 6685 measured reflections
  • 2959 independent reflections
  • 1843 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.159
  • S = 1.04
  • 2959 reflections
  • 128 parameters
  • 7 restraints
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047811/rz2526sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047811/rz2526Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a School start-up grant to LZ.

supplementary crystallographic information

Comment

In recent years there has been a rapidly increasing interest in the construction of various kinds of supramolecular systems for understanding molecular self-assembly principles and for designing molecular recognition. A supramolecular system generally refers to an assembly of molecules which are not covalently connected but assembled by other weak intermolecular interactions, such as hydrogen bonds (Lehn, 1995; Scheiner, 1997). We report here the crystal structure of the title compound, 2,6-dibromo-4-butylanilinium chloride.

In the title compound (Fig.1), the butyl group is approximately orthogonal to the benzene plane, as indicated by the torsion angles C1—C6—C7—C8 and C5—C6—C7—C8 of 76.2 (11) and -102.7 (10)°, respectively. The Br1, Br2 and N1 substituents are displaced by 0.0842 (8), 0.1142 (8) and -0.005 (5) Å, respectively, with respect to the benzene ring. Bond lengths and angles lie within normal ranges. In the crystal structure, the organic cations and Cl- anions are linked by N—H···Cl and N—H···Br hydrogen bonds (Table 1) to form one-dimensional chains along the a axis (Fig. 2).

Experimental

The title compound was purchased from ALFA AESAR. The compound (3 mmol) was dissolved in ethanol (20 ml) and the solution allowed to evaporate to obtain colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement

All H atoms were fixed geometrically and treated as riding, with C–H = 0.93-0.97 Å, N–H = 0.89 Å, and with Uiso(H) = 1.2 Uiso(C) or 1.5 Uiso(C, N) for methyl and protonated amine H atoms. Restraints (SIMU and DELU) were applied to the Uij parameters of atoms C9 and C10.

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Partial crystal packing of the title compound showing a chain formed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.

Crystal data

C10H14Br2N+·ClZ = 2
Mr = 343.49F(000) = 336
Triclinic, P1Dx = 1.758 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9785 (10) ÅCell parameters from 2959 reflections
b = 8.7844 (18) Åθ = 3.5–27.5°
c = 14.898 (3) ŵ = 6.42 mm1
α = 86.29 (3)°T = 298 K
β = 87.58 (3)°Block, colourless
γ = 87.17 (3)°0.10 × 0.03 × 0.03 mm
V = 648.9 (2) Å3

Data collection

Rigaku Mercury2 diffractometer2959 independent reflections
Radiation source: fine-focus sealed tube1843 reflections with I > 2σ(I)
graphiteRint = 0.073
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.5°
CCD profile fitting scansh = −6→6
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.910, Tmax = 1.000l = −19→19
6685 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0602P)2 + 0.1405P] where P = (Fo2 + 2Fc2)/3
2959 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.74 e Å3
7 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.72826 (13)0.30511 (8)0.02752 (5)0.0481 (3)
Br2−0.07834 (15)0.10595 (9)0.28643 (5)0.0591 (3)
C60.3280 (15)0.5078 (8)0.2416 (5)0.0510 (18)
C30.3104 (12)0.2297 (6)0.1577 (4)0.0380 (15)
C50.4948 (15)0.4763 (7)0.1683 (5)0.0533 (19)
H5A0.61590.54830.14630.064*
C20.1509 (13)0.2581 (7)0.2341 (5)0.0399 (15)
N10.2929 (10)0.0916 (5)0.1091 (4)0.0414 (13)
H1B0.41050.09390.06240.062*
H1C0.12730.08700.08950.062*
H1D0.33040.00990.14570.062*
C40.4871 (13)0.3411 (7)0.1268 (4)0.0426 (16)
C10.1564 (14)0.3928 (8)0.2748 (5)0.0503 (18)
H1A0.04470.40870.32530.060*
Cl10.2000 (3)0.13452 (17)−0.10326 (12)0.0454 (4)
C70.332 (2)0.6574 (9)0.2856 (6)0.074 (2)
H7A0.41590.73170.24380.088*
H7B0.14760.69430.29760.088*
C80.475 (2)0.6474 (10)0.3703 (8)0.100 (3)
H8A0.65340.60110.35880.120*
H8B0.38130.57900.41310.120*
C90.507 (3)0.7949 (12)0.4139 (8)0.121 (3)
H9A0.59830.86410.37070.145*
H9B0.32910.84030.42660.145*
C100.656 (3)0.7844 (12)0.4977 (8)0.124 (3)
H10A0.77050.86900.49790.185*
H10B0.76280.69050.50150.185*
H10C0.53020.78690.54840.185*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0415 (4)0.0531 (4)0.0507 (5)−0.0095 (3)−0.0033 (3)−0.0037 (3)
Br20.0639 (5)0.0619 (5)0.0529 (6)−0.0181 (4)0.0049 (4)−0.0073 (4)
C60.065 (5)0.044 (4)0.045 (5)−0.003 (4)−0.011 (4)−0.009 (3)
C30.042 (3)0.030 (3)0.044 (4)−0.003 (3)−0.012 (3)−0.008 (3)
C50.064 (5)0.034 (4)0.063 (5)−0.008 (3)−0.019 (4)0.002 (3)
C20.047 (4)0.034 (3)0.039 (4)−0.004 (3)−0.003 (3)−0.002 (3)
N10.039 (3)0.033 (3)0.053 (4)−0.007 (2)−0.002 (3)−0.010 (2)
C40.046 (4)0.044 (4)0.038 (4)0.008 (3)−0.012 (3)0.001 (3)
C10.052 (4)0.057 (4)0.042 (4)−0.001 (4)0.003 (4)−0.013 (3)
Cl10.0441 (9)0.0400 (8)0.0535 (11)−0.0059 (7)−0.0057 (8)−0.0093 (7)
C70.109 (7)0.044 (4)0.070 (6)−0.012 (4)0.000 (6)−0.013 (4)
C80.129 (8)0.065 (6)0.112 (10)0.000 (6)−0.036 (7)−0.039 (6)
C90.181 (9)0.080 (5)0.111 (7)−0.013 (6)−0.050 (6)−0.043 (5)
C100.183 (9)0.083 (5)0.113 (7)−0.011 (6)−0.049 (6)−0.041 (5)

Geometric parameters (Å, °)

Br1—C41.898 (7)C1—H1A0.9300
Br2—C21.907 (6)C7—C81.473 (12)
C6—C51.377 (10)C7—H7A0.9700
C6—C11.407 (10)C7—H7B0.9700
C6—C71.507 (10)C8—C91.504 (12)
C3—C21.389 (9)C8—H8A0.9700
C3—C41.391 (8)C8—H8B0.9700
C3—N11.461 (7)C9—C101.474 (15)
C5—C41.378 (9)C9—H9A0.9700
C5—H5A0.9300C9—H9B0.9700
C2—C11.365 (9)C10—H10A0.9600
N1—H1B0.8900C10—H10B0.9600
N1—H1C0.8900C10—H10C0.9600
N1—H1D0.8900
C5—C6—C1117.0 (6)C8—C7—C6113.8 (7)
C5—C6—C7121.8 (7)C8—C7—H7A108.8
C1—C6—C7121.2 (7)C6—C7—H7A108.8
C2—C3—C4117.2 (5)C8—C7—H7B108.8
C2—C3—N1122.6 (5)C6—C7—H7B108.8
C4—C3—N1120.1 (6)H7A—C7—H7B107.7
C6—C5—C4121.8 (7)C7—C8—C9116.7 (9)
C6—C5—H5A119.1C7—C8—H8A108.1
C4—C5—H5A119.1C9—C8—H8A108.1
C1—C2—C3121.7 (6)C7—C8—H8B108.1
C1—C2—Br2118.2 (5)C9—C8—H8B108.1
C3—C2—Br2120.2 (4)H8A—C8—H8B107.3
C3—N1—H1B109.5C10—C9—C8116.4 (10)
C3—N1—H1C109.5C10—C9—H9A108.2
H1B—N1—H1C109.5C8—C9—H9A108.2
C3—N1—H1D109.5C10—C9—H9B108.2
H1B—N1—H1D109.5C8—C9—H9B108.2
H1C—N1—H1D109.5H9A—C9—H9B107.4
C5—C4—C3121.1 (6)C9—C10—H10A109.5
C5—C4—Br1119.1 (5)C9—C10—H10B109.5
C3—C4—Br1119.8 (5)H10A—C10—H10B109.5
C2—C1—C6121.1 (6)C9—C10—H10C109.5
C2—C1—H1A119.4H10A—C10—H10C109.5
C6—C1—H1A119.4H10B—C10—H10C109.5
C1—C6—C5—C42.6 (11)C2—C3—C4—Br1175.9 (5)
C7—C6—C5—C4−178.4 (7)N1—C3—C4—Br1−5.7 (8)
C4—C3—C2—C13.2 (9)C3—C2—C1—C6−1.0 (10)
N1—C3—C2—C1−175.1 (6)Br2—C2—C1—C6177.7 (5)
C4—C3—C2—Br2−175.5 (4)C5—C6—C1—C2−1.9 (10)
N1—C3—C2—Br26.1 (8)C7—C6—C1—C2179.1 (7)
C6—C5—C4—C3−0.4 (10)C5—C6—C7—C8−102.7 (10)
C6—C5—C4—Br1−178.9 (5)C1—C6—C7—C876.2 (11)
C2—C3—C4—C5−2.5 (9)C6—C7—C8—C9175.0 (10)
N1—C3—C4—C5175.9 (6)C7—C8—C9—C10−178.9 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1i0.892.593.240 (5)130
N1—H1D···Cl1ii0.892.683.136 (5)113
N1—H1C···Br1iii0.892.823.517 (5)135
N1—H1B···Br10.892.513.094 (5)124
N1—H1B···Cl10.892.723.212 (6)116

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2526).

References

  • Lehn, J. M. (1995). In Supramolecular Chemistry: Concepts and Perspectives Weinheim: VCH.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Scheiner, S. (1997). Hydrogen Bonding New York: Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography