PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3128.
Published online 2010 November 13. doi:  10.1107/S1600536810044971
PMCID: PMC3011702

2,3-Dibromo-3-(5-nitro-2-fur­yl)-1-(4-nitro­phen­yl)propan-1-one

Abstract

In the title compound, C13H8Br2N2O6, the 2-furyl ring is essentially planar, with a maximum deviation of 0.002 (2) Å. It is inclined at an angle of 33.94 (9)° to the benzene ring. Both nitro groups are slightly twisted away from their attached rings; the dihedral angles are 4.6 (2)° between the nitro group and the 2-furyl ring, and 13.72 (19)° between the nitro group and the benzene ring. In the crystal, mol­ecules are linked into chains along [110] and [1An external file that holds a picture, illustration, etc.
Object name is e-66-o3128-efi1.jpg0] via two pairs of inter­molecular C—H(...)O hydrogen bonds, displaying R 2 2(10) ring motifs.

Related literature

For general background to and the biological activity of nitro­furans, see: Holla et al. (1986 [triangle], 1987 [triangle], 1992 [triangle]). For the preparation of title compound, see: Rai et al. (2008 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For a related structure, see: Fun et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3128-scheme1.jpg

Experimental

Crystal data

  • C13H8Br2N2O6
  • M r = 448.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3128-efi2.jpg
  • a = 12.1902 (2) Å
  • b = 12.2006 (2) Å
  • c = 9.9761 (2) Å
  • β = 96.282 (1)°
  • V = 1474.81 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.53 mm−1
  • T = 100 K
  • 0.48 × 0.36 × 0.30 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.176, T max = 0.291
  • 22940 measured reflections
  • 5315 independent reflections
  • 4546 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.066
  • S = 1.02
  • 5315 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.84 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044971/fj2362sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044971/fj2362Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to express their thanks to the Universiti Sains Malysia (USM) for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Nitrofurans are class of synthetic compounds characterized by the presence of 5-nitro-2-furyl group. The presence of nitro group in the position-5 of the molecule conferred antibacterial activity (Holla et al., 1986). A number of nitrofurans have attained utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activity (Holla et al., 1992; Holla et al., 1987). 1-Aryl-3-(5-nitro-2-furyl)-2-propyn-1-ones were prepared by the hydrobromination of 2,3-dibromo-1-aryl-3-(5-nitro-2-furyl)-2-propan-1-ones in the presence of triethylamine in benzene medium. The dibromopropanones were in turn obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with 5-nitrofuraldiacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones called chalcones (Rai et al., 2008).

In the title molecule (Fig. 1), the 2-furyl (O2/C10-C13) ring is essentially planar (maximum deviation = 0.002 (2) Å for atoms C11, C12 and C13) and is inclined at an angle of 33.94 (9) ° with the phenyl ring (C1-C6). Both nitro groups (N1/O3/O4 and N2/O5/O6) are slightly twisted away from the attached rings [the dihedral angles are 4.6 (2)° between nitro group and 2-fury ring and 13.72 (19)° between nitro group and phenyl ring]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a related structure (Fun et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into one-dimensional chains along [110] and [1-10] via pairs of intermolecular C2–H2A···O5 and C12–H12A···O3 hydrogen bonds, displaying R22(10) ring motifs (Bernstein et al., 1995).

Experimental

1-(p-Nitrophenyl)-3-(5-nitro-2-furyl)-2-propen-1-one (0.01 mol) was dissolved in glacial acetic acid (25 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% [w/v]) was added to it with constant stirring till yellow color of the bromine persisted. The reaction mixture was kept aside at room temperature for overnight. Crystals of dibromopropanones separated out were collected by filtration and washed with ethanol and dried. It was then recrystallized from glacial acetic acid. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.70 Å from Br1 and the deepest hole is located at 0.53 Å from Br2.

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C13H8Br2N2O6F(000) = 872
Mr = 448.03Dx = 2.018 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9181 reflections
a = 12.1902 (2) Åθ = 2.7–35.0°
b = 12.2006 (2) ŵ = 5.53 mm1
c = 9.9761 (2) ÅT = 100 K
β = 96.282 (1)°Block, light yellow
V = 1474.81 (5) Å30.48 × 0.36 × 0.30 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5315 independent reflections
Radiation source: fine-focus sealed tube4546 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 32.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −18→17
Tmin = 0.176, Tmax = 0.291k = −18→18
22940 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0329P)2 + 0.6835P] where P = (Fo2 + 2Fc2)/3
5315 reflections(Δ/σ)max = 0.003
208 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.041889 (15)0.421114 (15)0.681600 (19)0.03228 (5)
Br20.885347 (14)0.105613 (13)0.491276 (17)0.02690 (5)
O11.09576 (10)0.14526 (11)0.72205 (13)0.0308 (3)
O20.79177 (9)0.35369 (9)0.44313 (11)0.0231 (2)
O30.57672 (11)0.52110 (12)0.31188 (15)0.0376 (3)
O40.71217 (11)0.44726 (12)0.21746 (13)0.0343 (3)
O51.58062 (10)0.13853 (11)0.42438 (14)0.0334 (3)
O61.51706 (11)0.26900 (12)0.29087 (14)0.0335 (3)
N10.66040 (12)0.46327 (12)0.31406 (15)0.0274 (3)
N21.50858 (11)0.20428 (12)0.38341 (14)0.0251 (3)
C11.28637 (13)0.12333 (13)0.59042 (16)0.0235 (3)
H1A1.26910.06640.64640.028*
C21.38425 (14)0.12046 (13)0.53263 (17)0.0246 (3)
H2A1.43370.06280.54930.030*
C31.40608 (12)0.20650 (13)0.44904 (16)0.0219 (3)
C41.33605 (14)0.29473 (13)0.42338 (17)0.0253 (3)
H4A1.35400.35150.36760.030*
C51.23848 (14)0.29687 (13)0.48241 (16)0.0252 (3)
H5A1.19000.35550.46650.030*
C61.21302 (13)0.21085 (13)0.56577 (15)0.0218 (3)
C71.10791 (13)0.20769 (14)0.62976 (16)0.0239 (3)
C81.01418 (13)0.28532 (13)0.57771 (16)0.0227 (3)
H8A1.01580.29950.48120.027*
C90.90304 (13)0.23822 (13)0.60376 (16)0.0222 (3)
H9A0.90640.21680.69880.027*
C100.80678 (13)0.31058 (13)0.57093 (15)0.0222 (3)
C110.72425 (13)0.34199 (13)0.64346 (16)0.0245 (3)
H11A0.71660.32340.73240.029*
C120.65187 (14)0.40878 (14)0.55717 (17)0.0258 (3)
H12A0.58730.44250.57730.031*
C130.69716 (13)0.41271 (13)0.43947 (16)0.0233 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.03186 (10)0.03185 (9)0.03482 (10)−0.00803 (6)0.01125 (7)−0.01036 (7)
Br20.02422 (8)0.02524 (8)0.03086 (9)0.00128 (5)0.00126 (6)−0.00446 (6)
O10.0231 (6)0.0417 (7)0.0277 (6)−0.0014 (5)0.0023 (5)0.0128 (5)
O20.0209 (5)0.0286 (5)0.0210 (5)0.0039 (4)0.0068 (4)0.0037 (4)
O30.0334 (7)0.0421 (7)0.0381 (7)0.0164 (6)0.0073 (6)0.0102 (6)
O40.0344 (7)0.0457 (7)0.0241 (6)0.0072 (6)0.0086 (5)0.0075 (5)
O50.0231 (6)0.0371 (6)0.0404 (7)0.0058 (5)0.0059 (5)0.0039 (5)
O60.0285 (6)0.0407 (7)0.0329 (6)0.0017 (5)0.0104 (5)0.0080 (5)
N10.0259 (7)0.0302 (7)0.0265 (7)0.0032 (5)0.0049 (5)0.0045 (5)
N20.0208 (6)0.0291 (6)0.0255 (6)−0.0010 (5)0.0034 (5)−0.0026 (5)
C10.0233 (7)0.0232 (6)0.0238 (7)−0.0010 (5)0.0013 (6)0.0015 (5)
C20.0238 (7)0.0234 (7)0.0265 (7)0.0020 (5)0.0026 (6)0.0003 (6)
C30.0193 (6)0.0252 (7)0.0215 (7)−0.0010 (5)0.0027 (5)−0.0026 (5)
C40.0254 (7)0.0276 (7)0.0237 (7)0.0019 (6)0.0057 (6)0.0033 (6)
C50.0254 (7)0.0277 (7)0.0228 (7)0.0044 (6)0.0045 (6)0.0045 (6)
C60.0196 (7)0.0271 (7)0.0187 (6)−0.0002 (5)0.0019 (5)0.0009 (5)
C70.0204 (7)0.0302 (7)0.0207 (7)−0.0005 (5)0.0009 (5)0.0017 (5)
C80.0212 (7)0.0270 (7)0.0205 (6)−0.0004 (5)0.0051 (5)−0.0008 (5)
C90.0202 (7)0.0256 (7)0.0212 (7)0.0007 (5)0.0037 (5)−0.0003 (5)
C100.0212 (7)0.0263 (7)0.0198 (7)0.0017 (5)0.0054 (5)0.0016 (5)
C110.0233 (7)0.0294 (7)0.0218 (7)0.0016 (6)0.0073 (6)−0.0006 (6)
C120.0243 (7)0.0282 (7)0.0262 (7)0.0049 (6)0.0080 (6)−0.0013 (6)
C130.0217 (7)0.0251 (7)0.0238 (7)0.0038 (5)0.0054 (5)0.0015 (5)

Geometric parameters (Å, °)

Br1—C81.9639 (16)C3—C41.380 (2)
Br2—C91.9674 (16)C4—C51.384 (2)
O1—C71.216 (2)C4—H4A0.9300
O2—C131.3567 (19)C5—C61.395 (2)
O2—C101.3728 (18)C5—H5A0.9300
O3—N11.2385 (19)C6—C71.493 (2)
O4—N11.2240 (19)C7—C81.531 (2)
O5—N21.2260 (19)C8—C91.520 (2)
O6—N21.2277 (19)C8—H8A0.9800
N1—C131.423 (2)C9—C101.476 (2)
N2—C31.473 (2)C9—H9A0.9800
C1—C21.381 (2)C10—C111.357 (2)
C1—C61.397 (2)C11—C121.420 (2)
C1—H1A0.9300C11—H11A0.9300
C2—C31.384 (2)C12—C131.352 (2)
C2—H2A0.9300C12—H12A0.9300
C13—O2—C10104.77 (12)O1—C7—C8119.74 (15)
O4—N1—O3124.87 (15)C6—C7—C8118.86 (13)
O4—N1—C13118.89 (14)C9—C8—C7110.75 (13)
O3—N1—C13116.23 (14)C9—C8—Br1109.50 (10)
O5—N2—O6123.74 (15)C7—C8—Br1105.31 (10)
O5—N2—C3118.38 (14)C9—C8—H8A110.4
O6—N2—C3117.88 (14)C7—C8—H8A110.4
C2—C1—C6120.76 (15)Br1—C8—H8A110.4
C2—C1—H1A119.6C10—C9—C8115.96 (13)
C6—C1—H1A119.6C10—C9—Br2109.29 (11)
C1—C2—C3117.64 (15)C8—C9—Br2104.92 (10)
C1—C2—H2A121.2C10—C9—H9A108.8
C3—C2—H2A121.2C8—C9—H9A108.8
C4—C3—C2123.18 (15)Br2—C9—H9A108.8
C4—C3—N2118.00 (14)C11—C10—O2110.84 (13)
C2—C3—N2118.82 (14)C11—C10—C9131.93 (15)
C3—C4—C5118.60 (15)O2—C10—C9117.20 (13)
C3—C4—H4A120.7C10—C11—C12106.65 (14)
C5—C4—H4A120.7C10—C11—H11A126.7
C4—C5—C6119.81 (15)C12—C11—H11A126.7
C4—C5—H5A120.1C13—C12—C11105.13 (14)
C6—C5—H5A120.1C13—C12—H12A127.4
C5—C6—C1120.00 (15)C11—C12—H12A127.4
C5—C6—C7122.11 (14)C12—C13—O2112.62 (14)
C1—C6—C7117.88 (14)C12—C13—N1131.29 (15)
O1—C7—C6121.40 (15)O2—C13—N1116.03 (14)
C6—C1—C2—C3−0.6 (2)C7—C8—C9—C10173.89 (13)
C1—C2—C3—C41.2 (2)Br1—C8—C9—C1058.18 (16)
C1—C2—C3—N2−178.53 (14)C7—C8—C9—Br2−65.45 (14)
O5—N2—C3—C4166.33 (15)Br1—C8—C9—Br2178.84 (7)
O6—N2—C3—C4−13.4 (2)C13—O2—C10—C11−0.01 (18)
O5—N2—C3—C2−13.9 (2)C13—O2—C10—C9178.03 (14)
O6—N2—C3—C2166.39 (15)C8—C9—C10—C11−128.74 (19)
C2—C3—C4—C5−0.9 (2)Br2—C9—C10—C11112.98 (18)
N2—C3—C4—C5178.81 (14)C8—C9—C10—O253.73 (19)
C3—C4—C5—C60.0 (2)Br2—C9—C10—O2−64.55 (16)
C4—C5—C6—C10.6 (2)O2—C10—C11—C120.22 (19)
C4—C5—C6—C7−178.69 (15)C9—C10—C11—C12−177.43 (17)
C2—C1—C6—C5−0.3 (2)C10—C11—C12—C13−0.34 (19)
C2—C1—C6—C7179.02 (15)C11—C12—C13—O20.35 (19)
C5—C6—C7—O1−165.16 (17)C11—C12—C13—N1177.30 (17)
C1—C6—C7—O115.6 (2)C10—O2—C13—C12−0.22 (18)
C5—C6—C7—C814.6 (2)C10—O2—C13—N1−177.67 (14)
C1—C6—C7—C8−164.68 (14)O4—N1—C13—C12−173.83 (18)
O1—C7—C8—C9−26.5 (2)O3—N1—C13—C126.2 (3)
C6—C7—C8—C9153.73 (14)O4—N1—C13—O23.0 (2)
O1—C7—C8—Br191.78 (16)O3—N1—C13—O2−176.98 (15)
C6—C7—C8—Br1−87.98 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O5i0.932.483.211 (2)136
C12—H12A···O3ii0.932.433.317 (2)160

Symmetry codes: (i) −x+3, −y, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2362).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2010). Acta Cryst. E66, o3031–o3032. [PMC free article] [PubMed]
  • Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci.55, 73–76.
  • Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci.56, 236–238.
  • Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim.37, 1159–1164.
  • Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem.43, 1715–1720. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography