PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3310.
Published online 2010 November 27. doi:  10.1107/S1600536810048403
PMCID: PMC3011701

5-[1-(Carb­oxy­meth­yl)pyridinium-4-yl]-1,2,3,4-tetra­zol-1-ide

Abstract

In the title compound, C8H7N5O2, the tetra­zole and pyridine rings are twisted from each other by a dihedral angle of 17.97 (1)°. The zwitterionic mol­ecules are connected by O—H(...)N hydrogen bonds into a chain parallel to [20An external file that holds a picture, illustration, etc.
Object name is e-66-o3310-efi7.jpg]. Further C—H(...)O and C—H(...)N hydrogen bonds link the chains, building up a three-dimensional network.

Related literature

For the chemisty of tetra­zoles and for related structures, see: Fu et al. (2009 [triangle]); Wen (2008 [triangle]); Dai & Fu (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3310-scheme1.jpg

Experimental

Crystal data

  • C8H7N5O2
  • M r = 205.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3310-efi8.jpg
  • a = 8.8094 (18) Å
  • b = 9.3732 (19) Å
  • c = 11.189 (2) Å
  • β = 101.80 (3)°
  • V = 904.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 298 K
  • 0.10 × 0.03 × 0.03 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.910, T max = 1.000
  • 4629 measured reflections
  • 1043 independent reflections
  • 971 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.082
  • S = 1.07
  • 1043 reflections
  • 137 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810048403/dn2625sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810048403/dn2625Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Henan province.

supplementary crystallographic information

Comment

In the past few years, there was increasing interest in the chemistry of tetrazole derivatives owing their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Dai & Fu 2008; Fu et al., 2009; Wen, 2008). We report here the crystal structure of the title compound, 5-(1-(carboxymethyl)pyridinium-4-yl)tetrazol-1-ide.

In the title compound (Fig.1), a carboxymethanide group was connected to the pyridine N atom, thus indicating a positive charge in the pyridine N atom. And the tetrazole ring was showing a negative charge to make the charge balance. The tetrazole and pyridine rings are twisted from each other by a dihedral angle of 17.97 (1)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Fu et al., 2009).

In the crystal structure, the zwitterionic molecules are connected by the O—H···N hydrogen bonds, with the O···N distance of 2.646 (2)Å. This H-bonds link the zwitterionic units into a one-dimentional chain parallel to the [2 0 -1] direction (Table 1 and Fig.2). Futhermore, C-H···O and C-H···N link the chain building up a three dimensionnal network (Table 1, Fig. 2).

Experimental

5-(1-(carboxymethyl)pyridinium-4-yl)tetrazol-1-ide (4 mmol) was dissolved in ethanol (20 ml). The solution was allowed to evaporate to obtain colourless block-shaped crystals of the title compound.

Refinement

All H atoms attached to C and atoms were fixed geometrically and treated as riding on their parent atoms with C–H = 0.93 Å (aromatic), 0.97 Å (methylene) and O-H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view of the title compound showing the hydrogen bond pattern. H bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x+1, -y, z-1/2; (ii) x-1/2, y+1/2, z; (iii) x+1/2, ...

Crystal data

C8H7N5O2F(000) = 424
Mr = 205.19Dx = 1.507 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2059 reflections
a = 8.8094 (18) Åθ = 3.2–27.5°
b = 9.3732 (19) ŵ = 0.12 mm1
c = 11.189 (2) ÅT = 298 K
β = 101.80 (3)°Block, colourless
V = 904.4 (3) Å30.10 × 0.03 × 0.03 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer1043 independent reflections
Radiation source: fine-focus sealed tube971 reflections with I > 2σ(I)
graphiteRint = 0.021
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD profile fitting scansh = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −12→12
Tmin = 0.910, Tmax = 1.000l = −14→14
4629 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1896P] where P = (Fo2 + 2Fc2)/3
1043 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.1510 (2)0.22028 (18)0.28067 (17)0.0424 (4)
H1A1.19880.15810.25230.064*
O20.9872 (2)0.04264 (18)0.30239 (18)0.0473 (4)
N10.83175 (19)0.21616 (19)0.43834 (16)0.0302 (4)
N20.3137 (2)0.1524 (3)0.5601 (2)0.0498 (6)
N30.2244 (2)0.0761 (3)0.6185 (2)0.0488 (6)
N40.2990 (2)−0.0370 (2)0.66513 (19)0.0411 (5)
N50.4411 (2)−0.0394 (2)0.6403 (2)0.0414 (5)
C10.6906 (3)0.2695 (3)0.3907 (2)0.0374 (5)
H10.67950.33660.32830.045*
C20.5627 (3)0.2256 (3)0.4332 (2)0.0383 (5)
H20.46580.26450.40110.046*
C30.5786 (2)0.1231 (2)0.5242 (2)0.0306 (4)
C40.7249 (3)0.0675 (2)0.5702 (2)0.0371 (5)
H40.7380−0.00230.63040.045*
C50.8499 (3)0.1156 (2)0.5265 (2)0.0375 (5)
H50.94800.07880.55780.045*
C60.4446 (2)0.0779 (2)0.57437 (19)0.0320 (5)
C70.9702 (2)0.2699 (2)0.3979 (2)0.0339 (5)
H7A1.04940.29340.46900.041*
H7B0.94350.35670.35110.041*
C81.0352 (2)0.1622 (2)0.32033 (19)0.0308 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0384 (8)0.0479 (9)0.0486 (9)0.0017 (7)0.0268 (8)0.0014 (8)
O20.0452 (10)0.0420 (9)0.0610 (11)−0.0036 (8)0.0258 (9)−0.0095 (8)
N10.0251 (9)0.0346 (9)0.0351 (9)0.0004 (7)0.0156 (7)0.0006 (7)
N20.0292 (9)0.0692 (14)0.0553 (13)0.0078 (10)0.0184 (9)0.0190 (11)
N30.0272 (9)0.0736 (16)0.0495 (11)−0.0015 (10)0.0168 (8)0.0095 (11)
N40.0321 (9)0.0537 (12)0.0429 (10)−0.0090 (9)0.0202 (8)−0.0053 (9)
N50.0333 (10)0.0468 (11)0.0504 (11)−0.0008 (8)0.0232 (9)0.0039 (9)
C10.0328 (11)0.0421 (12)0.0406 (11)0.0048 (9)0.0152 (9)0.0104 (10)
C20.0256 (10)0.0484 (13)0.0431 (13)0.0047 (9)0.0121 (9)0.0081 (10)
C30.0247 (9)0.0385 (11)0.0312 (10)−0.0004 (8)0.0116 (8)−0.0031 (8)
C40.0295 (10)0.0417 (11)0.0434 (12)0.0028 (9)0.0150 (9)0.0125 (11)
C50.0246 (9)0.0462 (12)0.0438 (12)0.0072 (9)0.0119 (9)0.0103 (10)
C60.0276 (10)0.0389 (11)0.0320 (10)−0.0029 (8)0.0117 (9)−0.0016 (8)
C70.0296 (11)0.0359 (11)0.0419 (12)−0.0011 (8)0.0205 (9)0.0005 (9)
C80.0284 (9)0.0334 (10)0.0331 (10)0.0035 (8)0.0120 (8)0.0014 (9)

Geometric parameters (Å, °)

O1—C81.311 (3)C1—H10.9300
O1—H1A0.8200C2—C31.386 (3)
O2—C81.200 (3)C2—H20.9300
N1—C11.345 (3)C3—C41.388 (3)
N1—C51.350 (3)C3—C61.469 (3)
N1—C71.474 (3)C4—C51.370 (3)
N2—N31.329 (3)C4—H40.9300
N2—C61.330 (3)C5—H50.9300
N3—N41.299 (3)C7—C81.517 (3)
N4—N51.337 (3)C7—H7A0.9700
N5—C61.328 (3)C7—H7B0.9700
C1—C21.373 (3)
C8—O1—H1A109.5C5—C4—H4120.1
C1—N1—C5120.71 (18)C3—C4—H4120.1
C1—N1—C7120.49 (18)N1—C5—C4120.5 (2)
C5—N1—C7118.77 (18)N1—C5—H5119.8
N3—N2—C6104.1 (2)C4—C5—H5119.8
N4—N3—N2109.6 (2)N5—C6—N2112.5 (2)
N3—N4—N5110.4 (2)N5—C6—C3124.28 (19)
C6—N5—N4103.3 (2)N2—C6—C3123.2 (2)
N1—C1—C2120.6 (2)N1—C7—C8112.40 (17)
N1—C1—H1119.7N1—C7—H7A109.1
C2—C1—H1119.7C8—C7—H7A109.1
C1—C2—C3119.7 (2)N1—C7—H7B109.1
C1—C2—H2120.2C8—C7—H7B109.1
C3—C2—H2120.2H7A—C7—H7B107.9
C2—C3—C4118.6 (2)O2—C8—O1127.1 (2)
C2—C3—C6120.81 (19)O2—C8—C7123.7 (2)
C4—C3—C6120.52 (19)O1—C8—C7109.16 (17)
C5—C4—C3119.8 (2)
C6—N2—N3—N40.3 (3)N4—N5—C6—N21.3 (3)
N2—N3—N4—N50.5 (3)N4—N5—C6—C3−179.9 (2)
N3—N4—N5—C6−1.0 (3)N3—N2—C6—N5−1.0 (3)
C5—N1—C1—C21.9 (4)N3—N2—C6—C3−179.9 (2)
C7—N1—C1—C2−176.2 (2)C2—C3—C6—N5164.3 (2)
N1—C1—C2—C3−1.5 (4)C4—C3—C6—N5−17.9 (3)
C1—C2—C3—C40.1 (3)C2—C3—C6—N2−17.0 (3)
C1—C2—C3—C6177.9 (2)C4—C3—C6—N2160.8 (2)
C2—C3—C4—C50.9 (4)C1—N1—C7—C8−108.5 (2)
C6—C3—C4—C5−176.9 (2)C5—N1—C7—C873.4 (3)
C1—N1—C5—C4−0.9 (4)N1—C7—C8—O2−5.8 (3)
C7—N1—C5—C4177.2 (2)N1—C7—C8—O1175.68 (18)
C3—C4—C5—N1−0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N4i0.821.842.648 (3)170
C1—H1···O2ii0.932.553.165 (3)124
C1—H1···N3iii0.932.593.440 (3)152
C5—H5···N3iv0.932.393.270 (3)158

Symmetry codes: (i) x+1, −y, z−1/2; (ii) x−1/2, y+1/2, z; (iii) x+1/2, −y+1/2, z−1/2; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2625).

References

  • Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444. [PMC free article] [PubMed]
  • Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun.12, 994–997.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wen, X.-C. (2008). Acta Cryst. E64, m768. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography