PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3217–o3218.
Published online 2010 November 17. doi:  10.1107/S1600536810046921
PMCID: PMC3011695

6-[Bis(ethoxycarbonyl)methyl]-6-deoxy-1,2;3,4-di-O-isopropyl­idene-d-galacto­pyran­ose

Abstract

The title compound, C19H30O9, was prepared by substitution at the C6 position in 1,2;3,4-di-O-isopropyl­idene-6-O-trifluoro­methane­sulfonyl-d-galactose using sodium eth­oxy­malonate in dimethyl­formamide. The conformation is skew-boat 0 S 2, slightly distorted towards boat B 2,5. The inflexible pyran­ose structure makes the title compound a suitable inter­mediate for further synthetic work by keeping stereogenic carbon atoms safe from inversion. Several short intra­molecular C—H(...) O contacts may stabilize the conformation of the mol­ecule. Inter­molecular C—H(...)O inter­actions also occur.

Related literature

For syntheses of this and similar compounds, see: Bouhlal et al. (2001 [triangle]); Doboszewski et al. (1987 [triangle]); Honeyman & Stening (1958 [triangle]); Sugihara et al. (1963 [triangle]); Tipson (1953 [triangle]); Cipolla et al. (1996 [triangle]). For the structures of diisopropyl­idene-galactopyran­ose and related compounds, see: Krajewski et al. (1990 [triangle], 1994 [triangle]); Coutrot et al. (2001 [triangle]); Weaver et al. (2004 [triangle], 2006 [triangle]); Boeyens et al. (1978 [triangle]); Berces et al. (2001 [triangle]). For conformations of small rings, see: Schwarz (1973 [triangle]); Cremer & Pople (1975 [triangle]); Boeyens (1978 [triangle]); Hill & Reilly (2007 [triangle]); Köll et al. (1994 [triangle]). For analysis of absolute structure, see: Flack (1983 [triangle]); Hooft et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3217-scheme1.jpg

Experimental

Crystal data

  • C19H30O9
  • M r = 402.43
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3217-efi1.jpg
  • a = 8.3287 (4) Å
  • b = 10.8895 (4) Å
  • c = 23.7706 (16) Å
  • V = 2155.9 (2) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.83 mm−1
  • T = 292 K
  • 0.38 × 0.26 × 0.21 mm

Data collection

  • Rigaku R-AXIS RAPID II imaging plate diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi,1995 [triangle]) T min = 0.822, T max = 0.840
  • 9353 measured reflections
  • 3745 independent reflections
  • 2824 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.096
  • S = 1.02
  • 3745 reflections
  • 275 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.15 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1607 Friedel pairs
  • Flack parameter: 0.06 (18)

Data collection: CrystalClear-SM Expert (Rigaku, 2009 [triangle]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997 [triangle]); data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009) [triangle].

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046921/zl2327sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046921/zl2327Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by the NSF (grant CHE-0922366 for X-ray diffractometer) and SUNY (grant No 1073053).

supplementary crystallographic information

Comment

The title compound is an intermediate for the synthesis of a wide range of chain-extended galactopyranoses, which in turn are considered as precursors of chiral α-hydroxycarboxylic acids. The stereogenic atom C5 is retained in the target compounds. Knowledge of exact geometry of the intermediate is helpful for better understanding of upcoming steps in this ongoing synthetic project.

To realise these objectives we (BD & PRS) have prepared the title compound by substitution at the C6 position in 1,2;3,4-di-O-isopropylidene-6-O-trifluoromethanesulfonyl-D-galactose using sodium ethoxymalonate. Substitutions at this atom in diisopropylidene-galactose are rather difficult and require prolonged reaction times and/or elevated temperatures (Tipson, 1953, Honeyman & Stening, 1958, Sugihara et al., 1963, Bouhlal et al., 2001). Howeever, by using the best available leaving group, a trifluoromethanesulfonate, smooth nucleophilic substitution can been accomplished in less than 10 min (Doboszewski et al., 1987).

The absolute structure of 6-deoxy-6-(diethylmalonyl)-1,2;3,4-di-O -isopropylidene-D-galactopyranose is certain from the synthetic route which does not affect asymmetric atoms of the starting compound. Nevertheless, we preferred to receive a direct experimental confirmation using X-ray diffractometry data. Because there are no heavy atoms in a chiral molecule of title compound, Cu Kα radiation was necessary for determination of the absolute structure.

In the crystal structure of title compound (Fig.1), all bond lengths and bond angles have standard dimensions.

Fig. 2 shows that the pyranose ring adopts a skew-boat with atoms C1, C3, C4, and C5 being within 0.03–0.08 Å from their mean plane, and O1 and C2 atoms being at 0.633 (2) and -0.557 (2) Å, respectively. Such conformation is named OS2 in the IUPAC notation (Schwarz, 1973). A quantitative analysis of the ring conformations in the titlw compound was performed using the method of Cremer and Pople (Cremer & Pople, 1975, Boeyens, 1978) for the calculation of parameters of puckering. The polar parameters for the pyranose ring are Q = 0.639 (2) Å, Φ = 325.1 (2)°, and θ = 80.3 (2)°. These suggest the conformation as skew-boat 0S2 (Φ = 330°, θ = 90°), slightly distorted towards boat B2,5, (Φ = 300°, θ = 90°); the same conformation is designated as a twist-boat OT2 when using the Boeyenes nomenclature. This conformation is similar to many other known galactopyranoses with two substituent isopropylidene rings (see, for example, POCSUV (Krajewski et al., 1994): Q = 0.632 (5) Å, θ = 82.8 (5)°,Φ = 327.4 (4)°; JERJIUL (Krajewski et al., 1990): Q = 0.631 (5) Å, θ = 79.7 (5)°, Φ = 324.9 (5)°; ICALED (Coutrot et al., 2001): Q = 0.646 (4) Å, θ = 83.9 (4)°, Φ = 334.2 (3)°; BIHZUO (Weaver et al., 2004): Q = 0.661 (2) Å, θ = 81.3 (2)°, Φ = 327.1 (2)°; ADXPOP (Boeyens, Rathbone & Woolard,1978): Q = 0.65 Å, Φ = 329°, θ = 81°). All conformations of substituted compounds are radically different from the chair conformation of unsubstituted α -D-galactopyranose. This is caused by the presence of the two isopropylidene substituents that make the geometry of the pyranose ring more rigid and less sensitive towards any effects of substituents at the remaining C5 position. A detailed discussion of terminology and different puckering coordinates being used to describe six-membered non-aromatic cycles can be found in Hill & Reilly (2007) and Köll et al. (1994).

The same approach yielded the parameters of puckering Q(2) = 0.279 (2) Å, Φ = 283.3 (4)° and Q(2) = 0.234 (2) Å, Φ = 177.1 (7)° for the 1,2- and 3,4- isopropylidene rings. These values correspond to the envelope conformations 4E (Φ = 288°) and E1 (Φ = 180°) with atoms O3 and O4 being out of their corresponding planes by 0.426 (2) and 0.357 (2) Å correspondingly (Fig. 3 and 4). All other atoms in both five-membered rings are located within 0.01 Å from their mean planes.

No classic hydrogen bonds are possible for the title compound. However, several short C—H··· O contacts were detected that possibly stabilize the existing conformation of the molecule (Table 1).

The inflexible pyranose structure makes the title compound a suitable intermediate for further synthetic work by keeping the stereogenic carbon atoms C1—C5 safe from inversion. For the same reason, it is very probable that in solution this molecule will keep almost the same geometry as in the molecular crystal.

Experimental

Synthesis of the title compound was accomplished similar to previuosly published fluorination reaction (Doboszewski et al., 1987). We treated 1,2;3,4-di-O-isopropylidene-6-O-trifluoromethanesulfonyl-D- galactose with sodium ethoxymalonate in dimethylformamide at 333 K; the title compound was isolated in 80% yield (Figure 5). The compound is identical to previously obtained via a free-radical process in low yield (Cipolla et al., 1996). Spontaneous crystallization from a hexane-ethyl acetate system yielded colourless crystals suitable for single-crystal diffractometry (m.p. 331–334 K).

Refinement

The chirality of the title compound was known from the synthetic route; it was also examined using anomalous scattering. Analysis of the absolute structure using likelihood methods (Hooft et al., 2008) was performed using PLATON (Spek, 2003); 1570 Bijvoet pairs were employed. The results confirmed that the absolute structure had been correctly assigned: the probability that the structure is inverted is smaller than 10-9 with probability of racemic twinning at 0.002. Because no atom heavier than O is present, the standard deviation of the Flack parameter is relatively high. All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.99–1.03 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The rotating group model was applied for the methyl groups.

Figures

Fig. 1.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 2.
Conformation of the six-membered ring: mean plane drawn through C1—C3—C4—C5.
Fig. 3.
Conformation of the five-membered isopropylidene ring: plane through C1 C2 C6 O2.
Fig. 4.
Conformation of the five-membered isopropylidene ring: plane through C3 C9 O5 C4.
Fig. 5.
Synthetic route towards the title compound.

Crystal data

C19H30O9Dx = 1.240 Mg m3
Mr = 402.43Melting point: 322 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 2ac 2abCell parameters from 9579 reflections
a = 8.3287 (4) Åθ = 6.7–68.2°
b = 10.8895 (4) ŵ = 0.83 mm1
c = 23.7706 (16) ÅT = 292 K
V = 2155.9 (2) Å3Prism, colourless
Z = 40.38 × 0.26 × 0.21 mm
F(000) = 864

Data collection

Rigaku R-AXIS RAPID II imaging plate diffractometer3745 independent reflections
Radiation source: fine-focus sealed tube2824 reflections with I > 2σ(I)
graphiteRint = 0.075
Detector resolution: 10 pixels mm-1θmax = 66.5°, θmin = 6.7°
ω scansh = −6→9
Absorption correction: multi-scan (ABSCOR; Higashi,1995)k = −12→10
Tmin = 0.822, Tmax = 0.840l = −28→19
9353 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040w = 1/[σ2(Fo2) + (0.0285P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.19 e Å3
3745 reflectionsΔρmin = −0.15 e Å3
275 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0057 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1607 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.06 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.30842 (18)0.05824 (11)0.37716 (6)0.0531 (4)
O20.2263 (2)0.25329 (12)0.35151 (6)0.0653 (5)
O30.2044 (2)0.30221 (12)0.44385 (6)0.0646 (5)
O40.0989 (2)−0.00622 (15)0.48415 (7)0.0747 (5)
O50.3563 (2)−0.07330 (14)0.48515 (7)0.0817 (6)
O60.6685 (2)0.16820 (13)0.27264 (7)0.0718 (5)
O70.7237 (2)0.22413 (15)0.36113 (7)0.0852 (6)
O80.7062 (2)−0.17738 (13)0.31233 (6)0.0666 (5)
O90.8976 (2)−0.03812 (18)0.32008 (11)0.1155 (9)
C10.1819 (3)0.14252 (17)0.37891 (9)0.0523 (6)
H1A0.088 (2)0.1070 (8)0.3597 (4)0.063*
C20.1329 (3)0.18443 (17)0.43770 (9)0.0573 (6)
H2A0.012 (3)0.1918 (2)0.43999 (11)0.069*
C30.1939 (3)0.10213 (19)0.48485 (10)0.0600 (6)
H3A0.1836 (4)0.1456 (10)0.5227 (8)0.072*
C40.3665 (3)0.0557 (2)0.47632 (9)0.0566 (6)
H4A0.4367 (16)0.0921 (8)0.5044 (6)0.068*
C50.4315 (3)0.0817 (2)0.41783 (9)0.0490 (5)
H5A0.4630 (7)0.1708 (18)0.41554 (10)0.059*
C60.2124 (3)0.35512 (18)0.38911 (9)0.0580 (6)
C70.3592 (3)0.4335 (2)0.38497 (12)0.0860 (10)
H7A0.3572 (11)0.4945 (14)0.4142 (7)0.129*
H7B0.3615 (12)0.4733 (15)0.3489 (6)0.129*
H7C0.4532 (15)0.3831 (8)0.3892 (8)0.129*
C80.0607 (3)0.4254 (2)0.37542 (11)0.0742 (8)
H8A0.0457 (11)0.4951 (13)0.4040 (6)0.111*
H8B−0.0360 (13)0.3671 (8)0.3773 (7)0.111*
H8C0.0694 (9)0.4617 (14)0.3357 (6)0.111*
C90.1971 (3)−0.1063 (2)0.49989 (10)0.0657 (7)
C100.1486 (5)−0.2177 (2)0.46606 (14)0.1124 (13)
H10A0.034 (2)−0.2405 (13)0.4754 (7)0.169*
H10B0.222 (2)−0.2886 (14)0.4756 (8)0.169*
H10C0.157 (3)−0.1985 (8)0.4246 (7)0.169*
C110.1883 (4)−0.1306 (3)0.56235 (11)0.0901 (10)
H11A0.0735 (17)−0.1545 (17)0.5730 (2)0.135*
H11B0.221 (2)−0.0531 (13)0.5838 (3)0.135*
H11C0.265 (2)−0.2007 (15)0.5725 (2)0.135*
C120.5762 (3)0.00309 (19)0.40257 (9)0.0557 (6)
H12A0.5494 (4)−0.0868 (13)0.40954 (15)0.067*
H12B0.6699 (14)0.0260 (3)0.4279 (4)0.067*
C130.6261 (3)0.01977 (16)0.34089 (9)0.0510 (6)
H13A0.535 (2)0.0017 (4)0.3179 (5)0.061*
C140.6788 (3)0.1493 (2)0.32781 (11)0.0585 (6)
C150.7163 (4)0.2883 (2)0.25156 (13)0.0870 (10)
H15A0.826 (2)0.3111 (5)0.2665 (3)0.104*
H15B0.6368 (15)0.3532 (13)0.2641 (3)0.104*
C160.7196 (4)0.2807 (2)0.18966 (12)0.0887 (10)
H16A0.799 (2)0.2184 (16)0.1779 (2)0.133*
H16B0.750 (2)0.3614 (13)0.1739 (3)0.133*
H16C0.6122 (18)0.2572 (17)0.1757 (3)0.133*
C170.7604 (3)−0.0665 (2)0.32388 (10)0.0608 (6)
C180.8256 (3)−0.2666 (2)0.29360 (12)0.0725 (8)
H18A0.9058 (14)−0.2830 (3)0.3248 (5)0.087*
H18B0.8859 (11)−0.2336 (6)0.2598 (5)0.087*
C190.7401 (4)−0.3825 (2)0.27835 (11)0.0828 (10)
H19A0.6860 (18)−0.4159 (10)0.3119 (5)0.124*
H19B0.8182 (11)−0.4430 (10)0.2641 (7)0.124*
H19C0.6597 (18)−0.3651 (4)0.2490 (6)0.124*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0620 (10)0.0461 (7)0.0511 (9)0.0023 (8)−0.0101 (7)−0.0076 (7)
O20.0976 (13)0.0470 (8)0.0515 (9)0.0008 (8)0.0044 (9)0.0014 (6)
O30.0955 (13)0.0472 (8)0.0510 (9)0.0018 (9)−0.0093 (9)−0.0041 (7)
O40.0744 (13)0.0687 (10)0.0811 (13)−0.0030 (10)0.0129 (9)0.0232 (9)
O50.0809 (13)0.0615 (9)0.1028 (14)0.0083 (10)0.0273 (11)0.0349 (9)
O60.0982 (15)0.0526 (8)0.0645 (11)−0.0142 (9)0.0074 (10)0.0135 (8)
O70.1065 (16)0.0676 (10)0.0814 (13)−0.0359 (11)0.0086 (12)−0.0092 (9)
O80.0630 (11)0.0515 (8)0.0854 (12)−0.0037 (9)0.0082 (10)−0.0091 (8)
O90.0547 (12)0.0826 (12)0.209 (3)−0.0130 (11)0.0071 (14)−0.0325 (14)
C10.0597 (15)0.0464 (11)0.0508 (13)−0.0018 (12)−0.0106 (12)−0.0010 (9)
C20.0730 (18)0.0486 (12)0.0504 (14)0.0037 (12)0.0039 (12)−0.0024 (10)
C30.0764 (18)0.0570 (12)0.0466 (14)0.0017 (14)0.0079 (13)0.0032 (10)
C40.0679 (17)0.0551 (12)0.0467 (13)−0.0024 (13)−0.0017 (12)0.0068 (11)
C50.0588 (15)0.0430 (10)0.0452 (13)−0.0078 (11)−0.0057 (11)0.0016 (9)
C60.0759 (18)0.0446 (11)0.0534 (14)0.0025 (13)−0.0021 (13)0.0002 (10)
C70.087 (2)0.0612 (15)0.110 (2)−0.0130 (16)−0.0115 (17)0.0115 (15)
C80.0827 (19)0.0598 (14)0.0800 (19)0.0081 (15)−0.0057 (14)0.0083 (13)
C90.0756 (19)0.0581 (13)0.0635 (16)0.0010 (14)0.0195 (15)0.0125 (11)
C100.146 (4)0.0824 (19)0.108 (3)−0.020 (2)0.013 (2)−0.0156 (18)
C110.109 (2)0.0972 (19)0.0644 (17)0.015 (2)0.0238 (17)0.0259 (15)
C120.0600 (15)0.0517 (11)0.0555 (15)−0.0035 (13)−0.0012 (12)0.0091 (10)
C130.0539 (14)0.0458 (11)0.0534 (14)−0.0058 (11)0.0009 (11)0.0032 (10)
C140.0595 (17)0.0515 (12)0.0645 (16)−0.0050 (12)0.0059 (13)0.0027 (11)
C150.113 (3)0.0524 (13)0.096 (2)−0.0125 (16)0.026 (2)0.0189 (14)
C160.091 (2)0.0784 (17)0.096 (2)0.0061 (17)0.0249 (19)0.0356 (16)
C170.0568 (17)0.0571 (13)0.0684 (16)−0.0068 (13)0.0037 (13)−0.0003 (12)
C180.0680 (19)0.0702 (15)0.0794 (18)0.0135 (16)0.0072 (15)−0.0077 (13)
C190.109 (3)0.0585 (14)0.0807 (19)0.0077 (16)−0.0041 (17)−0.0091 (13)

Geometric parameters (Å, °)

O1—C11.398 (2)C7—H7C0.9614
O1—C51.432 (2)C8—H8A1.0264
O2—C11.420 (2)C8—H8B1.0264
O2—C61.429 (2)C8—H8C1.0264
O3—C21.422 (2)C9—C111.510 (3)
O3—C61.425 (2)C9—C101.511 (4)
O4—C91.413 (3)C10—H10A1.0094
O4—C31.421 (2)C10—H10B1.0094
O5—C91.418 (3)C10—H10C1.0094
O5—C41.423 (3)C11—H11A1.0229
O6—C141.330 (3)C11—H11B1.0229
O6—C151.456 (2)C11—H11C1.0229
O7—C141.196 (3)C12—C131.535 (3)
O8—C171.317 (3)C12—H12A1.0171
O8—C181.460 (3)C12—H12B1.0171
O9—C171.187 (3)C13—C141.509 (3)
C1—C21.526 (3)C13—C171.515 (3)
C1—H1A0.9878C13—H13A0.9571
C2—C31.523 (3)C15—C161.474 (4)
C2—H2A1.0091C15—H15A1.0130
C3—C41.537 (3)C15—H15B1.0130
C3—H3A1.0200C16—H16A0.9879
C4—C51.518 (3)C16—H16B0.9879
C4—H4A0.9713C16—H16C0.9879
C5—C121.522 (3)C18—C191.494 (3)
C5—H5A1.0065C18—H18A1.0133
C6—C71.494 (3)C18—H18B1.0133
C6—C81.513 (3)C19—H19A0.9857
C7—H7A0.9614C19—H19B0.9857
C7—H7B0.9614C19—H19C0.9857
C1—O1—C5113.72 (15)O4—C9—C10108.9 (2)
C1—O2—C6110.56 (16)O5—C9—C10108.8 (2)
C2—O3—C6106.90 (15)C11—C9—C10111.7 (2)
C9—O4—C3108.33 (17)C9—C10—H10A109.5
C9—O5—C4110.03 (18)C9—C10—H10B109.5
C14—O6—C15117.44 (19)H10A—C10—H10B109.5
C17—O8—C18116.12 (19)C9—C10—H10C109.5
O1—C1—O2110.33 (18)H10A—C10—H10C109.5
O1—C1—C2115.16 (18)H10B—C10—H10C109.5
O2—C1—C2103.64 (15)C9—C11—H11A109.5
O1—C1—H1A109.2C9—C11—H11B109.5
O2—C1—H1A109.2H11A—C11—H11B109.5
C2—C1—H1A109.2C9—C11—H11C109.5
O3—C2—C3108.38 (19)H11A—C11—H11C109.5
O3—C2—C1104.60 (18)H11B—C11—H11C109.5
C3—C2—C1114.14 (18)C5—C12—C13112.06 (17)
O3—C2—H2A109.8C5—C12—H12A109.2
C3—C2—H2A109.8C13—C12—H12A109.2
C1—C2—H2A109.8C5—C12—H12B109.2
O4—C3—C2107.09 (19)C13—C12—H12B109.2
O4—C3—C4104.26 (18)H12A—C12—H12B107.9
C2—C3—C4114.1 (2)C14—C13—C17108.06 (19)
O4—C3—H3A110.4C14—C13—C12112.71 (17)
C2—C3—H3A110.4C17—C13—C12112.42 (17)
C4—C3—H3A110.4C14—C13—H13A107.8
O5—C4—C5109.92 (18)C17—C13—H13A107.8
O5—C4—C3104.44 (18)C12—C13—H13A107.8
C5—C4—C3113.11 (19)O7—C14—O6124.5 (2)
O5—C4—H4A109.7O7—C14—C13126.2 (2)
C5—C4—H4A109.7O6—C14—C13109.2 (2)
C3—C4—H4A109.7O6—C15—C16107.3 (2)
O1—C5—C4109.26 (18)O6—C15—H15A110.2
O1—C5—C12107.79 (17)C16—C15—H15A110.2
C4—C5—C12113.28 (17)O6—C15—H15B110.2
O1—C5—H5A108.8C16—C15—H15B110.2
C4—C5—H5A108.8H15A—C15—H15B108.5
C12—C5—H5A108.8C15—C16—H16A109.5
O3—C6—O2105.14 (15)C15—C16—H16B109.5
O3—C6—C7109.3 (2)H16A—C16—H16B109.5
O2—C6—C7109.6 (2)C15—C16—H16C109.5
O3—C6—C8111.2 (2)H16A—C16—H16C109.5
O2—C6—C8109.00 (19)H16B—C16—H16C109.5
C7—C6—C8112.36 (18)O9—C17—O8123.5 (2)
C6—C7—H7A109.5O9—C17—C13124.7 (2)
C6—C7—H7B109.5O8—C17—C13111.8 (2)
H7A—C7—H7B109.5O8—C18—C19108.2 (2)
C6—C7—H7C109.5O8—C18—H18A110.1
H7A—C7—H7C109.5C19—C18—H18A110.1
H7B—C7—H7C109.5O8—C18—H18B110.1
C6—C8—H8A109.5C19—C18—H18B110.1
C6—C8—H8B109.5H18A—C18—H18B108.4
H8A—C8—H8B109.5C18—C19—H19A109.5
C6—C8—H8C109.5C18—C19—H19B109.5
H8A—C8—H8C109.5H19A—C19—H19B109.5
H8B—C8—H8C109.5C18—C19—H19C109.5
O4—C9—O5106.31 (17)H19A—C19—H19C109.5
O4—C9—C11111.6 (2)H19B—C19—H19C109.5
O5—C9—C11109.4 (2)
C5—O1—C1—O278.7 (2)C2—O3—C6—C7−146.7 (2)
C5—O1—C1—C2−38.2 (2)C2—O3—C6—C888.7 (2)
C6—O2—C1—O1−122.13 (19)C1—O2—C6—O316.5 (3)
C6—O2—C1—C21.7 (3)C1—O2—C6—C7133.8 (2)
C6—O3—C2—C3152.18 (19)C1—O2—C6—C8−102.8 (2)
C6—O3—C2—C130.0 (2)C3—O4—C9—O5−26.3 (2)
O1—C1—C2—O3101.3 (2)C3—O4—C9—C1193.0 (3)
O2—C1—C2—O3−19.2 (2)C3—O4—C9—C10−143.3 (2)
O1—C1—C2—C3−16.9 (3)C4—O5—C9—O417.1 (3)
O2—C1—C2—C3−137.5 (2)C4—O5—C9—C11−103.5 (2)
C9—O4—C3—C2145.74 (19)C4—O5—C9—C10134.2 (2)
C9—O4—C3—C424.4 (2)O1—C5—C12—C1351.9 (2)
O3—C2—C3—O4169.21 (18)C4—C5—C12—C13172.91 (19)
C1—C2—C3—O4−74.7 (3)C5—C12—C13—C1462.8 (2)
O3—C2—C3—C4−76.0 (2)C5—C12—C13—C17−174.81 (18)
C1—C2—C3—C440.2 (3)C15—O6—C14—O70.4 (4)
C9—O5—C4—C5−123.7 (2)C15—O6—C14—C13−179.3 (2)
C9—O5—C4—C3−2.1 (3)C17—C13—C14—O7−104.0 (3)
O4—C3—C4—O5−13.5 (2)C12—C13—C14—O720.9 (4)
C2—C3—C4—O5−129.97 (19)C17—C13—C14—O675.7 (3)
O4—C3—C4—C5106.0 (2)C12—C13—C14—O6−159.4 (2)
C2—C3—C4—C5−10.5 (3)C14—O6—C15—C16171.0 (2)
C1—O1—C5—C469.3 (2)C18—O8—C17—O9−0.5 (4)
C1—O1—C5—C12−167.25 (15)C18—O8—C17—C13177.98 (19)
O5—C4—C5—O174.9 (2)C14—C13—C17—O923.8 (3)
C3—C4—C5—O1−41.4 (2)C12—C13—C17—O9−101.2 (3)
O5—C4—C5—C12−45.3 (3)C14—C13—C17—O8−154.6 (2)
C3—C4—C5—C12−161.60 (18)C12—C13—C17—O880.4 (2)
C2—O3—C6—O2−29.2 (3)C17—O8—C18—C19−175.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O9i0.982.433.381 (3)163
C5—H5A···O71.012.593.185 (3)117
C8—H8B···O7i1.032.563.577 (3)169
C12—H12A···O51.022.422.811 (3)102
C13—H13A···O10.962.432.814 (3)103
C16—H16B···O1ii0.992.513.422 (3)153

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2327).

References

  • Berces, A., Whitfield, D. M. & Nukada, T. (2001). Tetrahedron, 57, 477–491.
  • Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct.8, 317–320.
  • Boeyens, J. C. A., Rathbone, E. B. & Woolard, G. R. (1978). Carbohydr. Res.62, 39–47.
  • Bouhlal, D., Martin, P., Massoui, M., Nowogrocki, G., Pilard, S., Villa, P. & Goethals, G. (2001). Tetrahedron Asymmetry, 12, 1573–1577.
  • Cipolla, L., Liguori, L., Nicotra, F., Torri, G. & Vismara, E. (1996). Chem. Commun., pp. 1253–1254.
  • Coutrot, F., Grison, C., Coutrot, P. & Toupet, L. (2001). Acta Cryst. E57, o519–o520.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Doboszewski, B., Hay, G. W. & Szarek, W. A. (1987). Can. J. Chem.65, 412–419.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hill, A. D. & Reilly, P. J. (2007). J. Chem. Inf. Model.47, 1031–1035. [PubMed]
  • Honeyman, J. & Stening, T. C. (1958). J. Chem. Soc. pp. 537–546.
  • Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst.41, 96–103. [PMC free article] [PubMed]
  • Köll, P., Saak, W., Pohl, S., Steiner, B. & Koóš, M. (1994). Carbohydr. Res.265, 237–248.
  • Krajewski, J. W., Gluzinski, P., Urbanczyk-Lipkowska, Z., Ramza, J. & Zamojski, A. (1990). Carbohydr. Res.200, 1–7.
  • Krajewski, J. W., Karpiesiuk, W. & Banaszek, A. (1994). Carbohydr. Res.257, 25–33. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rigaku (2009). CrystalClear-SM Expert Rigaku Corporation, Tokyo, Japan.
  • Schwarz, J. C. P. (1973). J. Chem. Soc. Chem. Commun. pp. 505–508.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Sugihara, J. M., Teerlink, W. J., MacLeod, R., Dorrence, S. M. & Springer, C. H. (1963). J. Org. Chem.28, 2079–2082.
  • Tipson, R. S. (1953). Adv. Carbohydr. Chem.8, 107–215. [PubMed]
  • Weaver, T. D., Norris, P. & Zeller, M. (2004). Acta Cryst. E60, o2113–o2114.
  • Weaver, T. D., Zeller, M. & Norris, P. (2006). J. Chem. Crystallogr.36, 647–654.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography