PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1628.
Published online 2010 November 24. doi:  10.1107/S1600536810047525
PMCID: PMC3011693

Aqua­bis­(1-methyl-1H-imidazole-κN 3)bis­(nitrato-κO)copper(II)

Abstract

The title complex mol­ecule, [Cu(NO3)2(C4H6N2)2(H2O)], has crystallographically imposed twofold symmetry. The CuII atom displays a distorted square-pyramidal CuN2O3 coordination geometry. In the crystal, inter­molecular O—H(...)O hydrogen bonds between the coordinated water mol­ecule and the nitrate anions form chains parallel to the c axis.

Related literature

The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials. For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009 [triangle]); Ye et al. (2006 [triangle]); Zhang et al. (2008 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1628-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)2(C4H6N2)2(H2O)]
  • M r = 369.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1628-efi1.jpg
  • a = 11.864 (2) Å
  • b = 12.242 (2) Å
  • c = 10.509 (2) Å
  • β = 93.98 (3)°
  • V = 1522.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.48 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.640, T max = 0.740
  • 7712 measured reflections
  • 1742 independent reflections
  • 1608 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.088
  • S = 1.14
  • 1742 reflections
  • 102 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810047525/rz2515sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047525/rz2515Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University.

supplementary crystallographic information

Comment

Dielectric constant measurements of compounds as a function of temperature is the basic method to find potential ferroelectric phase change materials (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). Unfortunately, the study carried out on the title compound indicated that the permittivity is temperature-independent, suggesting that there may be no dielectric disuniformity between 80 K to 350 K (m.p. 393–381 K). In this report the crystal structure of the title compound is reported.

The title complex molecules has crystallographically imposed twofold symmetry (Fig. 1). The copper(II) metal centre is five-coordinated in a distorted square-planar geometry by two nitrogen atoms from two 1-methyl-1H-imidazole ligands and two oxygen atoms from two NO3- defining the basal plane, and a coordinated water at the apex. The Cu–N and Cu–O bond lengths are not exceptional. In the crystal packing, intermolecular O—H···O hydrogen bonds (Table 1) between the coordinate water molecules and nitrate ions form chains along the c axis (Fig. 2).

Experimental

An aqueous solution of 1-methyl-1H-imidazole (1.64 g, 20 mmol) and H2SO4 (0.98 g, 10 mmol) was treated with CuSO4 (2.5 g, 10 mmol). After the mixture was churned for a few minutes, Ba(NO2)2 (5 g, 20 mmol) was added to give a blue solution. Slow evaporation of the resulting solution yielded blue crystals after a few days.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.96 Å, O—H = 0.85 Å, and with Uiso(H) = 1.2 Uiso(C, O) or 1.5 Uiso(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (A) 1-x, y. 1/2-z.
Fig. 2.
Packing diagram of the title compound showing the stacking of the molecules along the c axis. Dashed lines indicate hydrogen bonds.

Crystal data

[Cu(NO3)2(C4H6N2)2(H2O)]F(000) = 756
Mr = 369.78Dx = 1.613 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3705 reflections
a = 11.864 (2) Åθ = 3.0–27.5°
b = 12.242 (2) ŵ = 1.48 mm1
c = 10.509 (2) ÅT = 293 K
β = 93.98 (3)°Block, blue
V = 1522.6 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer1742 independent reflections
Radiation source: fine-focus sealed tube1608 reflections with I > 2σ(I)
graphiteRint = 0.031
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)h = −15→15
Tmin = 0.640, Tmax = 0.740k = −15→15
7712 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0453P)2 + 0.8389P] where P = (Fo2 + 2Fc2)/3
1742 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.3268 (2)0.4147 (2)0.0458 (2)0.0496 (5)
H1A0.37990.4495−0.00120.060*
C20.2500 (2)0.3234 (2)0.1908 (2)0.0505 (5)
H20.24020.28300.26410.061*
C30.1669 (2)0.3521 (2)0.1028 (3)0.0543 (6)
H3A0.09050.33540.10420.065*
C40.1617 (3)0.4595 (3)−0.1034 (3)0.0765 (9)
H4A0.11080.5157−0.07970.115*
H4B0.12030.4044−0.15190.115*
H4C0.21780.4906−0.15410.115*
Cu10.50000.36656 (3)0.25000.03738 (14)
N10.35145 (16)0.36341 (14)0.15477 (17)0.0427 (4)
N20.21687 (16)0.41042 (16)0.01160 (19)0.0493 (4)
N30.58487 (15)0.27708 (16)0.03266 (17)0.0462 (4)
O10.50000.5610 (2)0.25000.0700 (8)
H1B0.52670.59580.18880.084*0.50
H1C0.47330.59580.31120.084*0.50
O20.57326 (14)0.37175 (12)0.08207 (15)0.0473 (4)
O30.60599 (18)0.27180 (18)−0.08000 (16)0.0715 (6)
O40.57213 (17)0.19602 (15)0.09852 (17)0.0650 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0505 (12)0.0489 (12)0.0495 (12)−0.0099 (10)0.0038 (10)0.0080 (10)
C20.0491 (12)0.0617 (14)0.0414 (11)−0.0145 (11)0.0085 (9)0.0018 (10)
C30.0433 (12)0.0639 (15)0.0559 (14)−0.0101 (10)0.0051 (10)−0.0042 (11)
C40.0762 (19)0.0697 (18)0.080 (2)−0.0042 (15)−0.0213 (16)0.0228 (15)
Cu10.0392 (2)0.0413 (2)0.0326 (2)0.0000.00887 (13)0.000
N10.0436 (9)0.0461 (10)0.0391 (9)−0.0060 (7)0.0072 (7)−0.0004 (7)
N20.0522 (11)0.0427 (10)0.0520 (11)−0.0038 (8)−0.0038 (9)0.0025 (8)
N30.0437 (9)0.0580 (11)0.0371 (9)0.0025 (8)0.0052 (7)−0.0051 (8)
O10.096 (2)0.0467 (14)0.0651 (16)0.000−0.0127 (15)0.000
O20.0532 (9)0.0481 (9)0.0422 (8)−0.0034 (6)0.0152 (7)−0.0010 (6)
O30.0866 (14)0.0926 (15)0.0375 (9)0.0187 (11)0.0187 (8)−0.0079 (9)
O40.0866 (13)0.0497 (10)0.0582 (10)−0.0069 (9)0.0013 (9)0.0026 (8)

Geometric parameters (Å, °)

C1—N11.321 (3)C4—H4C0.9600
C1—N21.330 (3)Cu1—N1i1.9658 (19)
C1—H1A0.9300Cu1—N11.9658 (19)
C2—C31.350 (3)Cu1—O2i2.0216 (16)
C2—N11.377 (3)Cu1—O22.0216 (16)
C2—H20.9300Cu1—O12.381 (3)
C3—N21.363 (3)N3—O41.225 (3)
C3—H3A0.9300N3—O31.229 (2)
C4—N21.463 (3)N3—O21.281 (2)
C4—H4A0.9600O1—H1B0.8500
C4—H4B0.9600O1—H1C0.8500
N1—C1—N2111.7 (2)N1—Cu1—O288.90 (8)
N1—C1—H1A124.2O2i—Cu1—O2176.40 (9)
N2—C1—H1A124.2N1i—Cu1—O191.12 (5)
C3—C2—N1109.3 (2)N1—Cu1—O191.12 (5)
C3—C2—H2125.4O2i—Cu1—O188.20 (4)
N1—C2—H2125.4O2—Cu1—O188.20 (4)
C2—C3—N2106.6 (2)C1—N1—C2105.21 (19)
C2—C3—H3A126.7C1—N1—Cu1124.65 (16)
N2—C3—H3A126.7C2—N1—Cu1129.59 (15)
N2—C4—H4A109.5C1—N2—C3107.3 (2)
N2—C4—H4B109.5C1—N2—C4125.5 (2)
H4A—C4—H4B109.5C3—N2—C4127.2 (2)
N2—C4—H4C109.5O4—N3—O3122.9 (2)
H4A—C4—H4C109.5O4—N3—O2118.86 (17)
H4B—C4—H4C109.5O3—N3—O2118.2 (2)
N1i—Cu1—N1177.76 (10)Cu1—O1—H1B120.0
N1i—Cu1—O2i88.90 (8)Cu1—O1—H1C120.0
N1—Cu1—O2i91.17 (8)H1B—O1—H1C120.0
N1i—Cu1—O291.17 (8)N3—O2—Cu1112.97 (12)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···O3ii0.852.482.941 (3)115
O1—H1C···O3iii0.852.482.941 (3)115

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2515).

References

  • Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun.12, 994–997.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc.128, 6554–6555. [PubMed]
  • Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc.130, 10468–10469. [PubMed]
  • Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc.132, 7300–7302. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography