PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3260.
Published online 2010 November 20. doi:  10.1107/S1600536810047872
PMCID: PMC3011685

4-Carbamoylpiperidinium phenyl­acetate hemihydrate

Abstract

The asymmetric unit of the title compound, C6H13N2O+·C8H7O2 ·0.5H2O, comprises two isonipecotamide cations, two phenyl­acetate anions and a water mol­ecule of solvation. The hydrogen-bonding environments for both sets of ion pairs are essentially identical with the piperidinium and amide ‘ends’ of each cation involved in lateral heteromolecular hydrogen-bonded cyclic N—H(...)O associations [graph set R 2 2(11)] which incorporate a single carboxyl O-atom acceptor. These cyclic motifs enclose larger R 5 5(21) cyclic systems, forming sheet substructures which lie parallel to (101) and are linked across b by the single water mol­ecule via water O—H(...)Oc (c = carboxylate) associations, giving a duplex-sheet structure.

Related literature

For structural data on isonipecotamide salts, see: Smith et al. (2010 [triangle]); Smith & Wermuth (2010a [triangle],b [triangle],c [triangle]). For graph-set analysis, see Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3260-scheme1.jpg

Experimental

Crystal data

  • C6H13N2O+·C8H7O2 ·0.5H2O
  • M r = 273.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3260-efi3.jpg
  • a = 12.3107 (9) Å
  • b = 25.214 (2) Å
  • c = 9.5402 (10) Å
  • β = 90.469 (9)°
  • V = 2961.2 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 200 K
  • 0.50 × 0.22 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.959, T max = 0.979
  • 21326 measured reflections
  • 5802 independent reflections
  • 4258 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.105
  • S = 1.05
  • 5802 reflections
  • 392 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) within WinGX (Farrugia, 1999 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810047872/su2230sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047872/su2230Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

supplementary crystallographic information

Comment

The amide piperidine-4-carboxamide (isonipecotamide, INIPA) has proved to be a particularly useful synthon for the construction of hydrogen-bonded crystalline salts with a range of aromatic carboxylic acids, enabling their structure determination (Smith & Wermuth, 2010a, 2010b, 2010c; Smith et al., 2010). The title compound from the 1:1 stoichiometric reaction of phenylacetic acid with INIPA, the hemihydrate C6H13N2O+ C8H7O2-. 0.5H2O, (I) was obtained and the structure is reported on herein.

In (I) the asymmetric unit contains two phenylacetate anions (A and B), two INIPA cations (C and D) and a water molecule of solvation (O1W) (Fig. 1). The hydrogen-bonding environments for both sets of ion pairs are essentially identical with the piperidinium and amide 'ends' of each cation involved in lateral heteromolecular cyclic hydrogen-bonded associations [graph set R22(11) (Etter et al., 1990)] (Table 1) which incorporate a single carboxyl O-atom acceptor (Fig. 2). The rings involve (a): cation C pyrimidinium and cation D amide N—H donors and cation C amide and anion B carboxyl O-atom acceptors and (b): cation D pyrimidinium and cation C amide N—H donors and cation D amide and anion A carboxyl O-atom acceptors. These ring motifs enclose larger cyclic systems [graph set R55(21)] forming sheet substructures which lie parallel to (101) and are linked across b by the single water molecule via water OH···Ocarboxyl associations to give the two-dimensional duplex-sheet structure (Fig. 3).

In the two independent phenylacetate anions, the conformation of the acetate side chains are significantly different [comparative torsion angles (maximum) for C2/C6–C1–C11–C12, 95.07 (17)° (A) and 124.84 (17)° (B); C1–C11–C12–O12/O13, 90.43 (16)° (A) and 127.76 (16)° (B)].

Experimental

The title compound was synthesized by heating together under reflux for 10 mins, 1 mmol quantities of piperidine-4-carboxamide (isonipecotamide) and phenylacetic acid in 50 ml of 50% methanol–water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless plates of (I) from which a specimen was cleaved for the X-ray diffraction analysis.

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located in difference Fourier maps and were freely refined. Other H-atoms were included in calculated positions using a riding-model approximation [C–H = 0.93–0.98 Å] and with Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
Molecular configuration and atom naming scheme for the two INIPA cations (C, D) the two phenylacetate anions (A, B) and the water molecule of solvation (O1W) in the asymmetric unit of compound (I). Inter-species hydrogen bonds are shown as dashed lines ...
Fig. 2.
The two-dimensional hydrogen-bonded sheet substructure of compound (I) showing the R22(11) and larger R55(21) ring motifs [Non-associative H atoms have been omitted for clarity; hydrogen bonds are shown as dashed lines; for symmetry codes, see Table 1]. ...
Fig. 3.
A view along the a-axis of the unit cell of compound (I), showing the water-linked duplex-sheet structure.

Crystal data

C6H13N2O+·C8H7O2·0.5H2OF(000) = 1176
Mr = 273.33Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5553 reflections
a = 12.3107 (9) Åθ = 3.2–28.9°
b = 25.214 (2) ŵ = 0.09 mm1
c = 9.5402 (10) ÅT = 200 K
β = 90.469 (9)°Prism, colourless
V = 2961.2 (4) Å30.50 × 0.22 × 0.20 mm
Z = 8

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer5802 independent reflections
Radiation source: Enhance (Mo) X-ray source4258 reflections with I > 2σ(I)
graphiteRint = 0.041
Detector resolution: 16.066 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = −15→15
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −31→30
Tmin = 0.959, Tmax = 0.979l = −11→11
21326 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.056P)2] where P = (Fo2 + 2Fc2)/3
5802 reflections(Δ/σ)max = 0.002
392 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O41C0.64163 (9)0.15818 (5)0.16896 (11)0.0435 (4)
N1C1.02344 (12)0.17322 (6)0.12820 (14)0.0270 (4)
N41C0.61664 (12)0.16239 (6)−0.06342 (14)0.0281 (4)
C2C0.96731 (14)0.22255 (7)0.08191 (18)0.0350 (6)
C3C0.84553 (13)0.21748 (7)0.10209 (18)0.0328 (5)
C4C0.80024 (12)0.16875 (6)0.02592 (15)0.0263 (5)
C5C0.86040 (13)0.11923 (6)0.07541 (17)0.0296 (5)
C6C0.98170 (13)0.12504 (7)0.05565 (17)0.0350 (6)
C41C0.67876 (13)0.16266 (6)0.04932 (15)0.0263 (5)
O41D0.71839 (9)0.15906 (5)0.66969 (11)0.0340 (4)
N1D0.33442 (11)0.16040 (5)0.62431 (14)0.0239 (4)
N41D0.74212 (12)0.15583 (6)0.43668 (14)0.0275 (4)
C2D0.38272 (13)0.11238 (6)0.55692 (16)0.0268 (5)
C3D0.50450 (12)0.11097 (6)0.57817 (16)0.0257 (5)
C4D0.55825 (12)0.16182 (6)0.52381 (15)0.0229 (5)
C5D0.50677 (12)0.21026 (6)0.59475 (16)0.0265 (5)
C6D0.38455 (13)0.21083 (6)0.57385 (17)0.0281 (5)
C41D0.68013 (13)0.15910 (6)0.54975 (15)0.0225 (5)
O12A0.38376 (9)0.15741 (4)0.90984 (10)0.0303 (3)
O13A0.21718 (9)0.17101 (4)0.99066 (10)0.0269 (3)
C1A0.34155 (14)0.08390 (6)1.17288 (14)0.0267 (5)
C2A0.42802 (16)0.04963 (7)1.14988 (17)0.0409 (6)
C3A0.41423 (19)−0.00506 (8)1.1602 (2)0.0515 (8)
C4A0.31547 (19)−0.02627 (7)1.19230 (18)0.0477 (7)
C5A0.22827 (17)0.00717 (7)1.21644 (18)0.0421 (6)
C6A0.24171 (14)0.06180 (7)1.20799 (16)0.0330 (6)
C11A0.35341 (13)0.14331 (6)1.15417 (15)0.0262 (5)
C12A0.31531 (12)0.15890 (6)1.00715 (15)0.0212 (5)
O12B0.14841 (9)0.16112 (4)0.47053 (11)0.0337 (4)
O13B−0.02269 (9)0.15006 (5)0.40455 (11)0.0344 (4)
C1B0.10892 (13)0.06973 (7)0.65695 (16)0.0291 (5)
C2B0.12468 (16)0.02946 (7)0.55923 (18)0.0422 (7)
C3B0.19546 (18)−0.01206 (7)0.5849 (2)0.0488 (7)
C4B0.25265 (17)−0.01453 (7)0.70955 (19)0.0432 (7)
C5B0.23861 (15)0.02523 (7)0.80669 (17)0.0387 (6)
C6B0.16796 (14)0.06710 (7)0.78084 (16)0.0329 (6)
C11B0.03138 (15)0.11508 (8)0.62690 (17)0.0408 (6)
C12B0.05390 (13)0.14407 (6)0.48988 (15)0.0247 (5)
O1W0.16998 (12)0.24940 (7)0.79325 (14)0.0469 (5)
H4C0.812600.17310−0.074800.0320*
H11C1.0116 (15)0.1664 (6)0.2238 (19)0.038 (5)*
H12C1.0962 (19)0.1748 (7)0.104 (2)0.051 (6)*
H21C0.982500.22910−0.016200.0420*
H22C0.994500.252400.135700.0420*
H31C0.809800.249100.066600.0390*
H32C0.830100.214700.201400.0390*
H41C0.5472 (17)0.1585 (6)−0.0576 (18)0.035 (5)*
H42C0.6465 (16)0.1648 (6)−0.1533 (19)0.040 (5)*
H51C0.845300.113200.173700.0360*
H52C0.834500.088700.022900.0360*
H61C1.018300.093900.092700.0420*
H62C0.997400.12740−0.043600.0420*
H4D0.545100.164300.422600.0270*
H11D0.3410 (14)0.1582 (6)0.7207 (18)0.031 (5)*
H12D0.2590 (17)0.1610 (7)0.5982 (19)0.043 (5)*
H21D0.366100.112700.457400.0320*
H22D0.350800.080700.597000.0320*
H31D0.534200.080600.529200.0310*
H32D0.520900.106900.677200.0310*
H41D0.8121 (17)0.1539 (7)0.4489 (18)0.036 (5)*
H42D0.7104 (16)0.1581 (7)0.350 (2)0.046 (6)*
H51D0.523500.209600.694300.0320*
H52D0.537500.242400.555800.0320*
H61D0.353800.240500.624600.0340*
H62D0.367800.215600.475100.0340*
H2A0.495800.063401.127400.0490*
H3A0.47310−0.027401.145100.0620*
H4A0.30680−0.062801.197900.0570*
H5A0.16070−0.007001.238300.0510*
H6A0.183100.084001.226100.0400*
H11A0.428800.153501.167400.0320*
H12A0.310300.161701.223600.0320*
H2B0.086700.030500.474600.0510*
H3B0.20450−0.038400.517800.0590*
H4B0.29990−0.042500.727700.0520*
H5B0.277100.024000.891000.0460*
H6B0.160200.093700.847600.0400*
H11B0.035700.140300.703500.0490*
H12B−0.042200.101300.623800.0490*
H11W0.1841 (19)0.2232 (9)0.846 (2)0.065 (7)*
H12W0.163 (2)0.2760 (11)0.846 (3)0.086 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O41C0.0191 (6)0.0934 (10)0.0181 (6)−0.0034 (6)0.0012 (5)0.0025 (6)
N1C0.0149 (7)0.0434 (9)0.0226 (7)−0.0017 (6)0.0017 (6)0.0040 (6)
N41C0.0144 (7)0.0510 (9)0.0189 (7)0.0010 (7)0.0001 (6)−0.0011 (6)
C2C0.0265 (10)0.0390 (10)0.0395 (10)−0.0072 (8)−0.0041 (8)0.0141 (8)
C3C0.0237 (9)0.0306 (9)0.0442 (10)0.0037 (7)−0.0016 (8)0.0081 (8)
C4C0.0160 (8)0.0466 (10)0.0163 (7)0.0002 (7)−0.0002 (6)0.0043 (7)
C5C0.0229 (9)0.0359 (10)0.0301 (8)−0.0013 (7)−0.0014 (7)−0.0096 (7)
C6C0.0215 (9)0.0496 (11)0.0338 (9)0.0079 (8)0.0002 (7)−0.0102 (8)
C41C0.0188 (8)0.0401 (10)0.0200 (8)0.0012 (7)0.0001 (6)0.0004 (7)
O41D0.0217 (6)0.0623 (8)0.0181 (5)−0.0019 (6)−0.0009 (5)0.0038 (5)
N1D0.0143 (7)0.0379 (8)0.0195 (7)−0.0006 (6)−0.0009 (5)0.0042 (6)
N41D0.0155 (7)0.0484 (9)0.0185 (7)0.0002 (7)0.0013 (6)−0.0012 (6)
C2D0.0230 (9)0.0317 (9)0.0258 (8)−0.0058 (7)0.0010 (7)−0.0035 (7)
C3D0.0203 (9)0.0261 (8)0.0307 (8)0.0001 (7)0.0021 (7)−0.0016 (7)
C4D0.0172 (8)0.0339 (9)0.0175 (7)−0.0010 (7)0.0013 (6)0.0038 (6)
C5D0.0221 (9)0.0248 (8)0.0326 (8)−0.0023 (7)−0.0001 (7)0.0062 (7)
C6D0.0220 (9)0.0297 (9)0.0327 (8)0.0031 (7)−0.0004 (7)0.0077 (7)
C41D0.0221 (8)0.0268 (8)0.0187 (8)−0.0020 (7)0.0018 (6)0.0028 (6)
O12A0.0181 (6)0.0532 (7)0.0197 (5)0.0004 (5)0.0027 (5)0.0023 (5)
O13A0.0175 (6)0.0357 (6)0.0274 (6)0.0027 (5)0.0030 (5)0.0035 (5)
C1A0.0293 (9)0.0371 (9)0.0138 (7)0.0067 (8)−0.0014 (6)0.0020 (7)
C2A0.0361 (11)0.0503 (12)0.0363 (10)0.0116 (9)0.0064 (8)0.0089 (9)
C3A0.0600 (15)0.0461 (12)0.0486 (12)0.0266 (11)0.0090 (10)0.0079 (9)
C4A0.0755 (16)0.0314 (11)0.0361 (10)0.0096 (10)−0.0034 (10)0.0064 (8)
C5A0.0494 (12)0.0411 (11)0.0358 (10)−0.0062 (10)−0.0026 (9)0.0088 (8)
C6A0.0324 (10)0.0367 (10)0.0298 (9)0.0061 (8)0.0001 (7)0.0036 (7)
C11A0.0236 (9)0.0359 (9)0.0192 (8)−0.0002 (7)−0.0005 (6)−0.0017 (7)
C12A0.0193 (8)0.0223 (8)0.0220 (8)−0.0036 (6)0.0007 (6)−0.0012 (6)
O12B0.0200 (6)0.0432 (7)0.0377 (6)−0.0031 (5)−0.0059 (5)0.0081 (5)
O13B0.0167 (6)0.0597 (8)0.0268 (6)−0.0025 (5)−0.0036 (5)0.0070 (5)
C1B0.0238 (9)0.0388 (10)0.0248 (8)−0.0061 (7)0.0030 (7)0.0071 (7)
C2B0.0518 (13)0.0444 (12)0.0303 (9)−0.0107 (10)−0.0115 (9)0.0002 (8)
C3B0.0715 (15)0.0283 (10)0.0465 (11)−0.0041 (10)−0.0065 (11)−0.0039 (9)
C4B0.0502 (13)0.0329 (10)0.0466 (11)0.0020 (9)0.0024 (9)0.0140 (9)
C5B0.0357 (11)0.0533 (12)0.0270 (9)−0.0009 (9)−0.0037 (8)0.0107 (8)
C6B0.0304 (10)0.0465 (11)0.0219 (8)−0.0027 (8)0.0025 (7)−0.0002 (7)
C11B0.0275 (10)0.0645 (13)0.0306 (9)0.0098 (9)0.0064 (8)0.0111 (9)
C12B0.0168 (8)0.0322 (9)0.0251 (8)0.0042 (7)0.0004 (7)−0.0016 (7)
O1W0.0625 (10)0.0482 (9)0.0300 (7)0.0147 (8)−0.0042 (7)0.0048 (7)

Geometric parameters (Å, °)

O41C—C41C1.2382 (18)C5D—C6D1.516 (2)
O41D—C41D1.2338 (18)C2D—H21D0.9700
O12A—C12A1.2594 (18)C2D—H22D0.9700
O13A—C12A1.2547 (18)C3D—H31D0.9700
O12B—C12B1.2554 (19)C3D—H32D0.9700
O13B—C12B1.2498 (19)C4D—H4D0.9800
O1W—H11W0.85 (2)C5D—H52D0.9700
O1W—H12W0.84 (3)C5D—H51D0.9700
N1C—C6C1.488 (2)C6D—H61D0.9700
N1C—C2C1.488 (2)C6D—H62D0.9700
N41C—C41C1.315 (2)C1A—C6A1.393 (2)
N1C—H12C0.93 (2)C1A—C2A1.390 (3)
N1C—H11C0.941 (18)C1A—C11A1.516 (2)
N41C—H41C0.86 (2)C2A—C3A1.393 (3)
N41C—H42C0.938 (18)C3A—C4A1.365 (3)
N1D—C2D1.496 (2)C4A—C5A1.386 (3)
N1D—C6D1.495 (2)C5A—C6A1.390 (3)
N41D—C41D1.329 (2)C11A—C12A1.527 (2)
N1D—H12D0.96 (2)C2A—H2A0.9300
N1D—H11D0.924 (17)C3A—H3A0.9300
N41D—H42D0.913 (19)C4A—H4A0.9300
N41D—H41D0.87 (2)C5A—H5A0.9300
C2C—C3C1.519 (2)C6A—H6A0.9300
C3C—C4C1.530 (2)C11A—H11A0.9700
C4C—C5C1.525 (2)C11A—H12A0.9700
C4C—C41C1.522 (2)C1B—C11B1.515 (3)
C5C—C6C1.514 (2)C1B—C6B1.384 (2)
C2C—H21C0.9700C1B—C2B1.393 (2)
C2C—H22C0.9700C2B—C3B1.383 (3)
C3C—H31C0.9700C3B—C4B1.378 (3)
C3C—H32C0.9700C4B—C5B1.377 (2)
C4C—H4C0.9800C5B—C6B1.389 (3)
C5C—H52C0.9700C11B—C12B1.525 (2)
C5C—H51C0.9700C2B—H2B0.9300
C6C—H62C0.9700C3B—H3B0.9300
C6C—H61C0.9700C4B—H4B0.9300
C2D—C3D1.512 (2)C5B—H5B0.9300
C3D—C4D1.535 (2)C6B—H6B0.9300
C4D—C5D1.536 (2)C11B—H12B0.9700
C4D—C41D1.520 (2)C11B—H11B0.9700
O1W···O13A2.7881 (19)C12B···H2B2.9000
O1W···C2Ci3.272 (2)C12B···H22Ci3.0500
O1W···O12Bii2.8335 (19)C12B···H11Cvi2.648 (18)
O1W···N1Ci3.081 (2)C41C···H42D2.894 (19)
O12A···N1D2.7871 (17)C41C···H52Div2.9600
O12A···N41Ciii2.8789 (19)C41D···H31Cii2.8200
O12B···N1D2.7095 (18)C41D···H42Ciii2.870 (18)
O12B···O1Wiv2.8335 (19)H2A···H11A2.4500
O12B···C6D3.309 (2)H2B···C5Avii3.0900
O12B···C2D3.236 (2)H2B···C2Bxii3.0200
O13A···C6B3.349 (2)H2B···C12B2.9000
O13A···C6Cv3.188 (2)H4A···O41Dviii2.7500
O13A···O1W2.7881 (19)H4C···O41Dvii2.7100
O13A···N1Cv2.7322 (18)H4C···H62C2.5700
O13B···N41Dvi2.9177 (19)H4C···H42C2.1800
O13B···N1Cvi2.7638 (17)H4C···H21C2.5800
O13B···C6Cvi3.389 (2)H4D···H42D2.1600
O41C···N41D2.8294 (18)H4D···O41C2.7100
O41D···N41Ciii2.8480 (18)H4D···H62D2.5900
O1W···H61D2.8000H4D···H21D2.5800
O1W···H12Aiv2.9100H6A···H12A2.5100
O1W···H12Ci2.777 (19)H6A···H61Cv2.4000
O1W···H22Ci2.6200H6B···H11B2.3600
O12A···H41Ciii2.03 (2)H6B···O13A2.4800
O12A···H11D1.876 (17)H6B···C12A2.9400
O12B···H12Wiv1.99 (3)H6B···C6Cv3.0800
O12B···H12D1.82 (2)H6B···H62Cv2.4200
O12B···H11Cvi2.886 (18)H11A···H2A2.4500
O13A···H11W1.95 (2)H11A···O41Ciii2.6200
O13A···H6B2.4800H11B···H62Cv2.4800
O13A···H12Cv1.85 (2)H11B···H6B2.3600
O13B···H41Dvi2.08 (2)H11C···O13Bix1.826 (18)
O13B···H11Cvi1.826 (18)H11C···O12Bix2.886 (18)
O13B···H51Cvi2.8800H11C···H32C2.5500
O41C···H32C2.7400H11C···H51C2.4900
O41C···H51C2.7500H11C···C12Bix2.648 (18)
O41C···H4D2.7100H11D···C12A2.754 (17)
O41C···H42D1.917 (19)H11D···O12A1.876 (17)
O41C···H11Avii2.6200H11W···C12A2.75 (2)
O41D···H51D2.7300H11W···O13A1.95 (2)
O41D···H4Aviii2.7500H12A···H6A2.5100
O41D···H42Ciii1.918 (18)H12A···O1Wii2.9100
O41D···H31Cii2.7600H12C···C12Axi2.89 (2)
O41D···H4Ciii2.7100H12C···O1Wx2.777 (19)
O41D···H32D2.7700H12C···O13Axi1.85 (2)
N1C···O13Bix2.7638 (17)H12D···C12B2.75 (2)
N1C···O1Wx3.081 (2)H12D···O12B1.82 (2)
N1C···O13Axi2.7322 (18)H12D···C1B3.007 (19)
N1D···O12A2.7871 (17)H12D···C11B3.05 (2)
N1D···O12B2.7095 (18)H12W···C12Bii2.79 (3)
N41C···O12Avii2.8789 (19)H12W···O12Bii1.99 (3)
N41C···O41Dvii2.8480 (18)H21C···H4C2.5800
N41D···O41C2.8294 (18)H21C···H62C2.5800
N41D···O13Bix2.9177 (19)H21D···C6Avii3.1000
N41C···H52Div2.8300H21D···C1Avii2.8200
N41C···H51Dvii2.8300H21D···C11Avii3.0000
N41D···H32C2.9100H21D···H4D2.5800
N41D···H31Cii2.8200H22C···C12Bx3.0500
C2B···C5Avii3.564 (3)H22C···O1Wx2.6200
C2B···C2Bxii3.585 (3)H22D···C4B2.9000
C2C···O1Wx3.272 (2)H22D···C5B2.8100
C2D···C6B3.599 (2)H22D···C6B2.8900
C2D···O12B3.236 (2)H22D···C3B3.0200
C3B···C5Avii3.575 (3)H22D···C1B3.0500
C5A···C2Biii3.564 (3)H22D···C2B3.0900
C5A···C3Biii3.575 (3)H31C···C41Div2.8200
C6B···O13A3.349 (2)H31C···O41Div2.7600
C6B···C2D3.599 (2)H31C···N41Div2.8200
C6C···O13Axi3.188 (2)H32C···O41C2.7400
C6C···O13Bix3.389 (2)H32C···N41D2.9100
C6D···C12Aiv3.451 (2)H32C···H11C2.5500
C6D···O12B3.309 (2)H32C···H42D2.5000
C12A···C6Dii3.451 (2)H32C···H51C2.5800
C1A···H21Diii2.8200H32D···H51D2.5900
C1B···H22D3.0500H32D···O41D2.7700
C1B···H12D3.007 (19)H41C···C12Avii2.93 (2)
C2B···H22D3.0900H41C···O12Avii2.03 (2)
C2B···H2Bxii3.0200H41D···O13Bix2.08 (2)
C3B···H22D3.0200H41D···C12Bix3.01 (2)
C4B···H22D2.9000H42C···O41Dvii1.918 (18)
C4B···H51Cxiii2.9800H42C···H51Dvii2.3800
C5A···H2Biii3.0900H42C···C41Dvii2.870 (18)
C5B···H22D2.8100H42C···H4C2.1800
C6A···H21Diii3.1000H42D···H4D2.1600
C6A···H61Cv3.0600H42D···C41C2.894 (19)
C6B···H22D2.8900H42D···O41C1.917 (19)
C6B···H62Cv3.1000H42D···H32C2.5000
C6C···H6Bxi3.0800H51C···H32C2.5800
C11A···H61Dii2.9400H51C···O13Bix2.8800
C11A···H21Diii3.0000H51C···C4Bxiii2.9800
C11B···H12D3.05 (2)H51C···O41C2.7500
C12A···H12Cv2.89 (2)H51C···H11C2.4900
C12A···H11W2.75 (2)H51D···O41D2.7300
C12A···H11D2.754 (17)H51D···N41Ciii2.8300
C12A···H41Ciii2.93 (2)H51D···H32D2.5900
C12A···H61Dii2.8100H51D···H42Ciii2.3800
C12A···H6B2.9400H52D···C41Cii2.9600
C12B···H41Dvi3.01 (2)H52D···N41Cii2.8300
C12B···H12D2.75 (2)H61C···C6Axi3.0600
C12B···H12Wiv2.79 (3)H61C···H6Axi2.4000
H11W—O1W—H12W107 (2)H31D—C3D—H32D108.00
C2C—N1C—C6C112.75 (13)C4D—C3D—H31D109.00
C2C—N1C—H12C109.7 (11)C3D—C4D—H4D109.00
C6C—N1C—H11C104.3 (10)C41D—C4D—H4D109.00
H11C—N1C—H12C114.0 (17)C5D—C4D—H4D109.00
C2C—N1C—H11C111.4 (10)C4D—C5D—H51D109.00
C6C—N1C—H12C104.5 (11)C6D—C5D—H51D109.00
H41C—N41C—H42C117.5 (16)C6D—C5D—H52D109.00
C41C—N41C—H42C121.2 (12)H51D—C5D—H52D108.00
C41C—N41C—H41C121.2 (11)C4D—C5D—H52D109.00
C2D—N1D—C6D112.54 (12)N1D—C6D—H62D109.00
C2D—N1D—H11D110.3 (10)C5D—C6D—H61D109.00
C6D—N1D—H11D109.8 (10)N1D—C6D—H61D109.00
C6D—N1D—H12D107.7 (11)H61D—C6D—H62D108.00
H11D—N1D—H12D109.6 (15)C5D—C6D—H62D109.00
C2D—N1D—H12D106.8 (11)C2A—C1A—C6A117.89 (15)
C41D—N41D—H42D119.1 (13)C6A—C1A—C11A120.65 (15)
H41D—N41D—H42D122.7 (17)C2A—C1A—C11A121.41 (15)
C41D—N41D—H41D118.0 (11)C1A—C2A—C3A120.69 (18)
N1C—C2C—C3C110.40 (14)C2A—C3A—C4A120.9 (2)
C2C—C3C—C4C111.32 (14)C3A—C4A—C5A119.43 (17)
C3C—C4C—C41C111.47 (12)C4A—C5A—C6A120.04 (18)
C3C—C4C—C5C109.65 (12)C1A—C6A—C5A121.08 (16)
C5C—C4C—C41C110.33 (12)C1A—C11A—C12A109.48 (12)
C4C—C5C—C6C111.06 (13)O12A—C12A—C11A117.85 (13)
N1C—C6C—C5C111.00 (13)O13A—C12A—C11A117.78 (13)
O41C—C41C—C4C121.01 (13)O12A—C12A—O13A124.35 (13)
O41C—C41C—N41C122.48 (15)C1A—C2A—H2A120.00
N41C—C41C—C4C116.51 (13)C3A—C2A—H2A120.00
N1C—C2C—H21C110.00C2A—C3A—H3A120.00
N1C—C2C—H22C110.00C4A—C3A—H3A120.00
C3C—C2C—H22C110.00C5A—C4A—H4A120.00
H21C—C2C—H22C108.00C3A—C4A—H4A120.00
C3C—C2C—H21C110.00C4A—C5A—H5A120.00
C2C—C3C—H31C109.00C6A—C5A—H5A120.00
C2C—C3C—H32C109.00C5A—C6A—H6A120.00
C4C—C3C—H32C109.00C1A—C6A—H6A119.00
C4C—C3C—H31C109.00C1A—C11A—H11A110.00
H31C—C3C—H32C108.00C12A—C11A—H11A110.00
C41C—C4C—H4C108.00C12A—C11A—H12A110.00
C5C—C4C—H4C108.00H11A—C11A—H12A108.00
C3C—C4C—H4C108.00C1A—C11A—H12A110.00
C6C—C5C—H51C109.00C2B—C1B—C6B117.49 (16)
C4C—C5C—H51C109.00C2B—C1B—C11B120.95 (15)
H51C—C5C—H52C108.00C6B—C1B—C11B121.55 (15)
C6C—C5C—H52C109.00C1B—C2B—C3B121.63 (16)
C4C—C5C—H52C109.00C2B—C3B—C4B120.25 (17)
N1C—C6C—H61C109.00C3B—C4B—C5B118.79 (17)
C5C—C6C—H62C109.00C4B—C5B—C6B121.05 (16)
N1C—C6C—H62C109.00C1B—C6B—C5B120.79 (15)
C5C—C6C—H61C109.00C1B—C11B—C12B113.90 (14)
H61C—C6C—H62C108.00O12B—C12B—C11B117.73 (14)
N1D—C2D—C3D111.01 (12)O13B—C12B—C11B118.34 (14)
C2D—C3D—C4D111.40 (12)O12B—C12B—O13B123.92 (14)
C5D—C4D—C41D111.99 (12)C3B—C2B—H2B119.00
C3D—C4D—C5D109.56 (12)C1B—C2B—H2B119.00
C3D—C4D—C41D109.57 (12)C4B—C3B—H3B120.00
C4D—C5D—C6D111.24 (12)C2B—C3B—H3B120.00
N1D—C6D—C5D111.19 (12)C3B—C4B—H4B121.00
N41D—C41D—C4D116.31 (13)C5B—C4B—H4B121.00
O41D—C41D—N41D122.36 (15)C4B—C5B—H5B119.00
O41D—C41D—C4D121.32 (13)C6B—C5B—H5B120.00
N1D—C2D—H22D109.00C5B—C6B—H6B120.00
C3D—C2D—H21D109.00C1B—C6B—H6B120.00
C3D—C2D—H22D109.00C1B—C11B—H11B109.00
H21D—C2D—H22D108.00C1B—C11B—H12B109.00
N1D—C2D—H21D109.00C12B—C11B—H12B109.00
C2D—C3D—H31D109.00H11B—C11B—H12B108.00
C2D—C3D—H32D109.00C12B—C11B—H11B109.00
C4D—C3D—H32D109.00
C6C—N1C—C2C—C3C56.10 (17)C6A—C1A—C2A—C3A0.8 (2)
C2C—N1C—C6C—C5C−56.36 (17)C11A—C1A—C2A—C3A−176.53 (15)
C6D—N1D—C2D—C3D55.70 (16)C2A—C1A—C6A—C5A−1.5 (2)
C2D—N1D—C6D—C5D−55.55 (17)C11A—C1A—C6A—C5A175.77 (14)
N1C—C2C—C3C—C4C−55.83 (18)C2A—C1A—C11A—C12A95.07 (17)
C2C—C3C—C4C—C41C178.39 (13)C6A—C1A—C11A—C12A−82.13 (16)
C2C—C3C—C4C—C5C55.91 (17)C1A—C2A—C3A—C4A0.4 (3)
C3C—C4C—C41C—O41C−58.46 (19)C2A—C3A—C4A—C5A−0.7 (3)
C3C—C4C—C41C—N41C121.61 (15)C3A—C4A—C5A—C6A0.0 (3)
C5C—C4C—C41C—O41C63.62 (19)C4A—C5A—C6A—C1A1.2 (2)
C5C—C4C—C41C—N41C−116.31 (15)C1A—C11A—C12A—O12A−87.75 (17)
C3C—C4C—C5C—C6C−55.69 (17)C1A—C11A—C12A—O13A90.43 (16)
C41C—C4C—C5C—C6C−178.84 (12)C6B—C1B—C2B—C3B0.8 (3)
C4C—C5C—C6C—N1C55.90 (17)C11B—C1B—C2B—C3B179.74 (17)
N1D—C2D—C3D—C4D−55.88 (16)C2B—C1B—C6B—C5B−1.1 (3)
C2D—C3D—C4D—C5D55.72 (16)C11B—C1B—C6B—C5B179.96 (17)
C2D—C3D—C4D—C41D178.95 (12)C2B—C1B—C11B—C12B−54.1 (2)
C3D—C4D—C5D—C6D−55.38 (16)C6B—C1B—C11B—C12B124.84 (17)
C41D—C4D—C5D—C6D−177.17 (12)C1B—C2B—C3B—C4B0.1 (3)
C3D—C4D—C41D—O41D−66.13 (18)C2B—C3B—C4B—C5B−0.6 (3)
C3D—C4D—C41D—N41D112.70 (15)C3B—C4B—C5B—C6B0.3 (3)
C5D—C4D—C41D—O41D55.66 (19)C4B—C5B—C6B—C1B0.6 (3)
C5D—C4D—C41D—N41D−125.52 (15)C1B—C11B—C12B—O12B−53.1 (2)
C4D—C5D—C6D—N1D55.47 (16)C1B—C11B—C12B—O13B127.76 (16)

Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, −y+1/2, z−1/2; (v) x−1, y, z+1; (vi) x−1, y, z; (vii) x, y, z−1; (viii) −x+1, −y, −z+2; (ix) x+1, y, z; (x) x+1, −y+1/2, z−1/2; (xi) x+1, y, z−1; (xii) −x, −y, −z+1; (xiii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1C—H11C···O13Bix0.941 (18)1.826 (18)2.7638 (17)174.8 (17)
N1C—H12C···O13Axi0.93 (2)1.85 (2)2.7322 (18)157.9 (18)
N1D—H11D···O12A0.924 (17)1.876 (17)2.7871 (17)168.4 (16)
N1D—H12D···O12B0.96 (2)1.82 (2)2.7095 (18)153.0 (17)
N41C—H41C···O12Avii0.86 (2)2.03 (2)2.8789 (19)166.3 (16)
N41C—H42C···O41Dvii0.938 (18)1.918 (18)2.8480 (18)170.8 (14)
N41D—H41D···O13Bix0.87 (2)2.08 (2)2.9177 (19)160.6 (16)
N41D—H42D···O41C0.913 (19)1.917 (19)2.8294 (18)176.4 (18)
O1W—H11W···O13A0.85 (2)1.95 (2)2.7881 (19)171 (2)
O1W—H12W···O12Bii0.84 (3)1.99 (3)2.8335 (19)179 (3)
C6B—H6B···O13A0.932.483.349 (2)156

Symmetry codes: (ix) x+1, y, z; (xi) x+1, y, z−1; (vii) x, y, z−1; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2230).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o3162. [PMC free article] [PubMed]
  • Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o609–o613. [PubMed]
  • Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. C66, o614–o618. [PubMed]
  • Smith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160–o3161. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography