PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3172.
Published online 2010 November 13. doi:  10.1107/S1600536810045496
PMCID: PMC3011684

(2Z)-4-[(2-Hy­droxy­phen­yl)carbamo­yl]prop-2-enoic acid

Abstract

In the title compound, C10H9NO4, the 2-hy­droxy­anilinic and the 4-oxobut-2-enoic acid groups are almost planar, with r.m.s. deviations of 0.0086 and 0.0262 Å, respectively. The dihedral angle between the two groups is 6.65 (1)°. Intra­molecular N—H(...)O, C—H(...)O and O—H(...)O hydrogen bonds form S(5), S(6) and S(7) ring motifs. In the crystal, the mol­ecules are dimerized due to C—H(...)O and O—H(...)O inter­molecular hydrogen bonds, with R 2 2(8) ring motifs. The dimers are inter­linked into polymeric chains along [010] with R 4 3(13) ring motifs by C—H(...)O, N—H(...)O and O—H(...)O hydrogen bonds.

Related literature

For background and a related structure, see: Shah et al. (2008 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3172-scheme1.jpg

Experimental

Crystal data

  • C10H9NO4
  • M r = 207.18
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3172-efi1.jpg
  • a = 6.7873 (3) Å
  • b = 10.6855 (4) Å
  • c = 12.8442 (4) Å
  • V = 931.54 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 K
  • 0.32 × 0.25 × 0.24 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.968, T max = 0.978
  • 4118 measured reflections
  • 997 independent reflections
  • 944 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.082
  • S = 1.09
  • 997 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810045496/bq2250sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045496/bq2250Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

We reported the crystal structure of (II) i.e., 4-[(2-Fluorophenyl)amino]-4-oxobutanoic acid (Shah et al., 2008), previously. The title compound (I, Fig. 1), has been prepared in continuation to synthesize substituted oxobutanoic acids.

In (I), the 2-hydroxyanilinic group (C1—C6/O1/N1) and the other part i.e., 4-oxobut-2-enoic acid (C7—C10/O2/O3/O4) are planar with r.m.s. deviation of 0.0086 Å and 0.0262 Å, respectively. The dihedral angle between two groups is 6.65 (1)°. The intramolecular H-bondings of N—H···O, C—H···O and O—H···O types (Table 1, Fig. 1) complete S(5), S(6) and S(7) ring motifs (Bernstein et al., 1995). Generally, the carboxylic acids are dimerized through O—H···O bonds with R22(8) ring motifs but the molecules of (I) are dimerized in a different way. The molecules of (I) are dimerized due to C—H···O and O—H···O intermolecular H-bondings with R22(8) ring motifs (Table 1, Fig. 2). In these dimers the donor and accepter groups are from separate molecules. This change has been occurred due to the attachment of hydroxy group at the position-2 of benzene ring and the presence of carbonyl group. The dimers are interlinked in the form of polymeric chains extending along the crystallographic b-axis i.e., along [010] with R43(13) ring motifs due to C—H···O, N—H···O and O—H···O tyeps of H-bondings (Table 1, Fig. 2).

Experimental

2-Hydroxyaniline (10.9 g, 0.1 mol) was dissolved in 30 ml of glacial acetic acid. A solution of Maleic anhydride (9.8 g, 0.1 mol) in 50 ml glacial acetic acid was added and the mixture was stirred overnight. The precipitate which appeared were filtered, washed with distilled water and dried at 313–315 K. The acid was recrystallized from acetone to get yellow prisms of title compound. (Yield: 85%, m.p. 415 K)

Refinement

The H-atoms were positioned geometrically with (O—H = 0.82, N—H = 0.86, C–H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all H-atoms.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal displacements are drawn at the 50% probability level. The dotted line indicate the intramolecular H-bond.
Fig. 2.
The partial packing (PLATON; Spek, 2009) which shows that molecules form one-dimensional polymeric network due to strong intermolecular H-bondings.

Crystal data

C10H9NO4F(000) = 432
Mr = 207.18Dx = 1.477 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 944 reflections
a = 6.7873 (3) Åθ = 3.2–25.2°
b = 10.6855 (4) ŵ = 0.12 mm1
c = 12.8442 (4) ÅT = 296 K
V = 931.54 (6) Å3Prism, yellow
Z = 40.32 × 0.25 × 0.24 mm

Data collection

Bruker Kappa APEXII CCD diffractometer997 independent reflections
Radiation source: fine-focus sealed tube944 reflections with I > 2σ(I)
graphiteRint = 0.015
Detector resolution: 8.2 pixels mm-1θmax = 25.2°, θmin = 3.2°
ω scansh = −7→8
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −12→12
Tmin = 0.968, Tmax = 0.978l = −15→14
4118 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.050P)2 + 0.1393P] where P = (Fo2 + 2Fc2)/3
997 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0644 (3)−0.02680 (12)0.57792 (9)0.0460 (5)
O20.0945 (3)0.39908 (12)0.45571 (10)0.0498 (5)
O30.0839 (4)0.62508 (12)0.50201 (11)0.0565 (6)
O40.0659 (3)0.73178 (12)0.64703 (12)0.0519 (5)
N10.0940 (3)0.21180 (13)0.53692 (11)0.0339 (4)
C10.0933 (3)0.12928 (16)0.45057 (14)0.0311 (5)
C20.0788 (3)0.00188 (16)0.47494 (13)0.0333 (5)
C30.0808 (3)−0.08600 (17)0.39600 (15)0.0397 (6)
C40.0939 (4)−0.04766 (19)0.29330 (16)0.0416 (6)
C50.1054 (3)0.07754 (19)0.26907 (14)0.0403 (6)
C60.1071 (3)0.16658 (18)0.34720 (14)0.0358 (5)
C70.0946 (3)0.33779 (16)0.53732 (14)0.0312 (5)
C80.0967 (3)0.39436 (16)0.64192 (14)0.0341 (5)
C90.0918 (3)0.51549 (17)0.66740 (14)0.0366 (5)
C100.0796 (3)0.63080 (16)0.60326 (15)0.0384 (6)
H10.093950.176690.597170.0407*
H1A0.06683−0.103020.585220.0552*
H30.07345−0.170790.411870.0476*
H3A0.092100.551760.483670.0677*
H40.09499−0.106950.240300.0499*
H50.111940.102430.199780.0483*
H60.117530.251040.330630.0430*
H80.102150.338500.697360.0409*
H90.097000.530390.738680.0439*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0805 (11)0.0226 (6)0.0350 (7)0.0016 (8)−0.0057 (7)0.0025 (5)
O20.0934 (12)0.0237 (6)0.0322 (7)0.0007 (8)−0.0019 (10)0.0017 (5)
O30.1077 (14)0.0221 (7)0.0396 (8)0.0033 (10)−0.0012 (10)0.0015 (5)
O40.0801 (11)0.0239 (6)0.0518 (9)−0.0005 (8)−0.0008 (9)−0.0067 (6)
N10.0494 (9)0.0225 (7)0.0299 (7)0.0008 (8)−0.0004 (9)0.0006 (5)
C10.0335 (9)0.0249 (9)0.0350 (9)0.0011 (8)−0.0023 (10)−0.0039 (7)
C20.0402 (9)0.0262 (9)0.0335 (9)0.0014 (9)−0.0038 (9)0.0005 (7)
C30.0480 (11)0.0256 (9)0.0455 (11)−0.0017 (10)−0.0046 (11)−0.0065 (8)
C40.0467 (12)0.0376 (10)0.0404 (10)−0.0027 (10)−0.0003 (10)−0.0120 (8)
C50.0449 (12)0.0440 (11)0.0319 (9)−0.0015 (11)−0.0008 (10)−0.0026 (8)
C60.0426 (10)0.0302 (9)0.0347 (9)0.0011 (9)0.0009 (10)0.0018 (8)
C70.0374 (9)0.0213 (8)0.0348 (9)0.0002 (8)−0.0006 (10)0.0014 (7)
C80.0446 (11)0.0257 (8)0.0319 (9)−0.0006 (10)0.0016 (10)0.0040 (7)
C90.0466 (10)0.0314 (9)0.0318 (9)−0.0016 (10)0.0028 (10)−0.0031 (7)
C100.0481 (12)0.0245 (9)0.0427 (10)−0.0014 (10)−0.0009 (11)−0.0025 (8)

Geometric parameters (Å, °)

O1—C21.361 (2)C3—C41.384 (3)
O2—C71.236 (2)C4—C51.376 (3)
O3—C101.302 (2)C5—C61.383 (3)
O4—C101.220 (2)C7—C81.473 (3)
O1—H1A0.8200C8—C91.336 (2)
O3—H3A0.8200C9—C101.485 (3)
N1—C11.417 (2)C3—H30.9300
N1—C71.346 (2)C4—H40.9300
N1—H10.8600C5—H50.9300
C1—C21.400 (2)C6—H60.9300
C1—C61.389 (3)C8—H80.9300
C2—C31.382 (3)C9—H90.9300
O1···O4i2.7282 (18)C7···C1viii3.424 (3)
O1···N12.6111 (19)C8···C6ix3.528 (3)
O1···C5ii3.368 (3)C8···C1ix3.583 (3)
O2···C103.120 (2)C8···C6viii3.389 (3)
O2···C62.850 (2)C8···C5viii3.538 (3)
O2···O32.4881 (18)C8···O4vi3.404 (2)
O3···O22.4881 (18)C9···C5viii3.543 (3)
O3···C3iii3.374 (2)C9···C4viii3.434 (3)
O3···C73.104 (2)C9···C4ix3.462 (3)
O4···C8iv3.404 (2)C9···C3ix3.500 (3)
O4···C5v3.404 (3)C10···C3viii3.419 (3)
O4···O1iii2.7282 (18)C10···O23.120 (2)
O1···H12.2000C10···C3ix3.435 (3)
O1···H5ii2.8200C4···H6xii3.0400
O1···H9vi2.6700C6···H4vii3.0000
O2···H62.2600C7···H3A2.3900
O2···H4vii2.8300C7···H62.8200
O2···H3A1.6700C8···H3A2.6400
O3···H3iii2.4700C10···H1Aiii2.8600
O4···H5v2.8900H1···O12.2000
O4···H1Aiii1.9400H1···H82.1600
O4···H8iv2.5700H1A···O4i1.9400
N1···O12.6111 (19)H1A···C10i2.8600
C1···C7viii3.407 (3)H1A···H32.3400
C1···C7ix3.424 (3)H3···O3i2.4700
C1···C8viii3.583 (3)H3···H1A2.3400
C3···O3i3.374 (2)H3A···O21.6700
C3···C9viii3.500 (3)H3A···C72.3900
C3···C10viii3.435 (3)H3A···C82.6400
C3···C10ix3.419 (3)H4···O2xii2.8300
C4···C9viii3.462 (3)H4···C6xii3.0000
C4···C9ix3.434 (3)H4···H6xii2.2800
C5···C8ix3.538 (3)H5···O1x2.8200
C5···O1x3.368 (3)H5···O4xi2.8900
C5···O4xi3.404 (3)H6···O22.2600
C5···C9ix3.543 (3)H6···C72.8200
C6···C8ix3.389 (3)H6···C4vii3.0400
C6···O22.850 (2)H6···H4vii2.2800
C6···C8viii3.528 (3)H8···H12.1600
C7···C1ix3.407 (3)H8···O4vi2.5700
C7···O33.104 (2)H9···O1iv2.6700
C2—O1—H1A109.00C7—C8—C9128.38 (17)
C10—O3—H3A109.00C8—C9—C10132.05 (17)
C1—N1—C7128.71 (15)O3—C10—C9120.93 (15)
C1—N1—H1116.00O4—C10—C9118.85 (17)
C7—N1—H1116.00O3—C10—O4120.22 (17)
N1—C1—C6124.70 (16)C2—C3—H3120.00
C2—C1—C6119.82 (16)C4—C3—H3120.00
N1—C1—C2115.48 (15)C3—C4—H4120.00
C1—C2—C3119.73 (16)C5—C4—H4120.00
O1—C2—C1116.18 (15)C4—C5—H5120.00
O1—C2—C3124.10 (16)C6—C5—H5120.00
C2—C3—C4119.91 (17)C1—C6—H6120.00
C3—C4—C5120.47 (18)C5—C6—H6120.00
C4—C5—C6120.35 (17)C7—C8—H8116.00
C1—C6—C5119.70 (17)C9—C8—H8116.00
O2—C7—N1121.78 (16)C8—C9—H9114.00
O2—C7—C8123.78 (16)C10—C9—H9114.00
N1—C7—C8114.44 (15)
C7—N1—C1—C2−175.7 (2)O1—C2—C3—C4179.3 (2)
C7—N1—C1—C64.8 (4)C1—C2—C3—C4−1.0 (3)
C1—N1—C7—O20.0 (4)C2—C3—C4—C50.1 (4)
C1—N1—C7—C8−179.6 (2)C3—C4—C5—C61.0 (4)
N1—C1—C2—O10.9 (3)C4—C5—C6—C1−1.2 (3)
N1—C1—C2—C3−178.76 (19)O2—C7—C8—C92.6 (4)
C6—C1—C2—O1−179.54 (19)N1—C7—C8—C9−177.8 (2)
C6—C1—C2—C30.8 (3)C7—C8—C9—C101.2 (4)
N1—C1—C6—C5179.9 (2)C8—C9—C10—O3−4.4 (4)
C2—C1—C6—C50.3 (3)C8—C9—C10—O4175.8 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, −y, z+1/2; (iii) x, y+1, z; (iv) −x, y+1/2, −z+3/2; (v) −x+1/2, −y+1, z+1/2; (vi) −x, y−1/2, −z+3/2; (vii) −x, y+1/2, −z+1/2; (viii) x−1/2, −y+1/2, −z+1; (ix) x+1/2, −y+1/2, −z+1; (x) −x+1/2, −y, z−1/2; (xi) −x+1/2, −y+1, z−1/2; (xii) −x, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.202.6111 (19)109
O1—H1A···O4i0.821.942.7282 (18)162
O3—H3A···O20.821.672.4881 (18)175
C3—H3···O3i0.932.473.374 (2)164
C6—H6···O20.932.262.850 (2)121
C8—H8···O4vi0.932.573.404 (2)150

Symmetry codes: (i) x, y−1, z; (vi) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2250).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Shah, F. A., Tahir, M. N. & Ali, S. (2008). Acta Cryst. E64, o1661. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography