PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1622–m1623.
Published online 2010 November 24. doi:  10.1107/S1600536810047434
PMCID: PMC3011677

(2,2′-Biquinoline-κ2 N,N′)dibromido­zinc(II)

Abstract

In the title compound, [ZnBr2(C18H12N2)], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the 2,2′-biquinoline ligand and two terminal Br atoms. The crystal packing is stabilized by weak inter­molecular C—H(...)Br hydrogen bonds and extensive inter­molecular π–π contacts between the pyridine and benzene rings [centroid–centroid distances = 3.775 (4), 3.748 (4), 3.735 (4), 3.538 (4), 3.678 (4) and 3.513 (4) Å].

Related literature

For Zn—Br and Zn—N bond lengths in related structures, see: Alizadeh et al. (2009 [triangle]), Muranishi et al. (2005 [triangle]). For complexes of 2,2′-biquinoline, see: Bowmaker et al. (2005 [triangle]); Butcher & Sinn (1977 [triangle]); Kou et al. (2008 [triangle]); Moreno et al. (2007 [triangle]); Okabe & Muranishi (2005 [triangle]); Rahimi et al. (2009 [triangle]); Yoshikawa et al. (2003 [triangle]); Zhou & Ng (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1622-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C18H12N2)]
  • M r = 481.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1622-efi1.jpg
  • a = 7.9188 (16) Å
  • b = 12.351 (3) Å
  • c = 17.385 (4) Å
  • β = 103.01 (3)°
  • V = 1656.7 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.31 mm−1
  • T = 298 K
  • 0.20 × 0.13 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.380, T max = 0.530
  • 13476 measured reflections
  • 4471 independent reflections
  • 2968 reflections with I > 2σ(I)
  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.150
  • S = 1.15
  • 4471 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 1.14 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810047434/jj2062sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810047434/jj2062Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the University of Sistan and Baluchestan for financial support.

supplementary crystallographic information

Comment

Numerous complexes have been prepared with the bidentate ligand 2,2'-biquinoline (2,2'-biq) such as that of iron (Rahimi et al., 2009), iridium (Yoshikawa et al., 2003), platinum (Okabe & Muranishi 2005), copper (Moreno et al., 2007; Zhou & Ng 2006), silver (Bowmaker et al., 2005), nickel (Kou et al., 2008; Butcher & Sinn 1977) and palladium (Muranishi et al., 2005). For further investigation of 2,2'-biquinoline, we have synthesized the title compound, [ZnBr2(C18H12N2)].

In the title compound, the ZnII atom is four-coordinate in a distorted tetrahedral configuration with two N atoms from one 2,2'-biquinoline and two terminal Br atoms (Fig. 1). The Zn—N and Zn—Br bond lengths and angles are within the normal ranges for [ZnCl2(biq)] (Muranishi et al., 2005) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine], respectively. Crystal stability is enhanced by weak intermolecular C—H···Br hydrogen bonds (Table 2, Fig.2) and extensive weak π—π intermolecular contacts between the mean planes of the pyridine and phenyl rings (Table 3).

Experimental

For the preparation of the title compound, a solution of 2,2'- biquinoline (0.51 g, 2.0 mmol) in methanol (10 ml) and chloroform (10 ml) was added to a solution of ZnBr2 (0.46 g, 2.0 mmol) in methanol (5 ml) and chloroform (5 ml) and the resulting solution was stirred for 20 min at room temperature. Suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion into a solution in DMSO after one week (yield; 0.72 g, 74.8%).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93Å for aromatics (H) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram for title molecule viewed down the a axis. Dashed lines indicate weak C—H···Br intermolecular interactions.

Crystal data

[ZnBr2(C18H12N2)]F(000) = 936
Mr = 481.49Dx = 1.930 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 434 reflections
a = 7.9188 (16) Åθ = 2.0–29.3°
b = 12.351 (3) ŵ = 6.31 mm1
c = 17.385 (4) ÅT = 298 K
β = 103.01 (3)°Block, colorless
V = 1656.7 (7) Å30.20 × 0.13 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer4471 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
graphiteRint = 0.098
θ and ω scansθmax = 29.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −9→10
Tmin = 0.380, Tmax = 0.530k = −16→16
13476 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.0538P)2 + 1.2857P] where P = (Fo2 + 2Fc2)/3
4471 reflections(Δ/σ)max = 0.007
208 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7304 (8)0.5440 (4)0.0324 (4)0.0354 (13)
C20.8156 (9)0.4877 (5)0.1012 (4)0.0434 (14)
H20.81580.51520.15100.052*
C30.8975 (9)0.3922 (5)0.0933 (5)0.0518 (18)
H30.95390.35470.13820.062*
C40.8974 (10)0.3501 (5)0.0183 (5)0.0529 (18)
H40.95410.28510.01420.063*
C50.8161 (10)0.4024 (5)−0.0483 (5)0.0488 (17)
H50.81610.3728−0.09750.059*
C60.7312 (8)0.5020 (5)−0.0430 (4)0.0386 (13)
C70.6441 (9)0.5609 (5)−0.1093 (4)0.0428 (15)
H70.64300.5354−0.15980.051*
C80.5609 (9)0.6557 (5)−0.1000 (3)0.0424 (15)
H80.50210.6947−0.14360.051*
C90.5666 (8)0.6924 (5)−0.0231 (3)0.0317 (11)
C100.4705 (8)0.7925 (4)−0.0082 (3)0.0313 (12)
C110.3551 (8)0.8467 (5)−0.0691 (4)0.0383 (13)
H110.33840.8227−0.12100.046*
C120.2681 (8)0.9347 (5)−0.0514 (4)0.0409 (14)
H120.19210.9716−0.09150.049*
C130.2924 (8)0.9702 (5)0.0272 (4)0.0387 (13)
C140.2045 (10)1.0612 (5)0.0494 (5)0.0489 (17)
H140.12581.09950.01130.059*
C150.2351 (11)1.0923 (6)0.1259 (5)0.058 (2)
H150.17521.15100.14010.070*
C160.3560 (12)1.0371 (6)0.1841 (5)0.0576 (19)
H160.37771.06100.23610.069*
C170.4432 (10)0.9479 (6)0.1651 (4)0.0495 (17)
H170.52230.91100.20390.059*
C180.4100 (8)0.9135 (5)0.0853 (3)0.0369 (13)
N10.6500 (7)0.6402 (4)0.0408 (3)0.0312 (10)
N20.4991 (7)0.8251 (4)0.0668 (3)0.0320 (10)
Zn10.67435 (10)0.73002 (6)0.14281 (4)0.03680 (19)
Br10.95564 (10)0.80280 (6)0.17474 (5)0.0561 (2)
Br20.55785 (11)0.65496 (6)0.24275 (4)0.0554 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.039 (3)0.029 (3)0.041 (3)−0.006 (2)0.014 (3)0.000 (2)
C20.043 (4)0.044 (3)0.044 (3)0.001 (3)0.010 (3)0.007 (3)
C30.042 (4)0.039 (3)0.074 (5)0.005 (3)0.011 (4)0.013 (3)
C40.045 (4)0.031 (3)0.086 (6)0.001 (3)0.019 (4)−0.007 (3)
C50.053 (4)0.039 (3)0.059 (4)−0.008 (3)0.022 (4)−0.016 (3)
C60.039 (3)0.037 (3)0.042 (3)−0.008 (3)0.015 (3)−0.008 (3)
C70.055 (4)0.039 (3)0.035 (3)−0.011 (3)0.011 (3)−0.016 (3)
C80.051 (4)0.046 (3)0.027 (3)−0.011 (3)0.003 (3)−0.003 (3)
C90.035 (3)0.032 (3)0.026 (2)−0.010 (2)0.003 (2)−0.003 (2)
C100.035 (3)0.031 (3)0.025 (2)−0.006 (2)0.001 (2)0.001 (2)
C110.040 (3)0.040 (3)0.030 (3)−0.007 (3)−0.002 (2)0.005 (2)
C120.037 (3)0.039 (3)0.042 (3)0.001 (3)0.000 (3)0.010 (3)
C130.034 (3)0.037 (3)0.044 (3)−0.002 (2)0.008 (3)0.003 (3)
C140.050 (4)0.035 (3)0.066 (5)0.004 (3)0.022 (4)0.004 (3)
C150.063 (5)0.052 (4)0.071 (5)0.009 (4)0.039 (4)−0.001 (4)
C160.074 (5)0.058 (4)0.046 (4)0.010 (4)0.025 (4)−0.011 (3)
C170.065 (5)0.052 (4)0.034 (3)0.003 (3)0.015 (3)−0.002 (3)
C180.046 (4)0.030 (3)0.035 (3)−0.005 (2)0.011 (3)0.001 (2)
N10.038 (3)0.028 (2)0.027 (2)−0.0014 (19)0.0052 (19)−0.0017 (18)
N20.040 (3)0.030 (2)0.026 (2)0.002 (2)0.0074 (19)0.0012 (18)
Zn10.0467 (4)0.0377 (3)0.0234 (3)0.0022 (3)0.0023 (3)0.0002 (3)
Br10.0502 (4)0.0611 (4)0.0508 (4)−0.0085 (3)−0.0019 (3)−0.0033 (3)
Br20.0760 (5)0.0629 (4)0.0263 (3)−0.0154 (4)0.0095 (3)0.0018 (3)

Geometric parameters (Å, °)

C1—N11.371 (7)C11—C121.359 (9)
C1—C61.412 (8)C11—H110.9300
C1—C21.416 (9)C12—C131.407 (9)
C2—C31.368 (10)C12—H120.9300
C2—H20.9300C13—C181.399 (9)
C3—C41.404 (11)C13—C141.420 (9)
C3—H30.9300C14—C151.353 (11)
C4—C51.355 (11)C14—H140.9300
C4—H40.9300C15—C161.403 (12)
C5—C61.415 (9)C15—H150.9300
C5—H50.9300C16—C171.379 (10)
C6—C71.405 (9)C16—H160.9300
C7—C81.371 (10)C17—C181.417 (9)
C7—H70.9300C17—H170.9300
C8—C91.403 (8)C18—N21.376 (8)
C8—H80.9300N1—Zn12.063 (4)
C9—N11.325 (7)N2—Zn12.056 (5)
C9—C101.504 (8)Zn1—Br22.3348 (11)
C10—N21.334 (7)Zn1—Br12.3498 (12)
C10—C111.404 (8)
N1—C1—C6121.1 (6)C11—C12—C13120.2 (6)
N1—C1—C2118.8 (6)C11—C12—H12119.9
C6—C1—C2120.1 (6)C13—C12—H12119.9
C3—C2—C1119.1 (7)C18—C13—C12118.0 (6)
C3—C2—H2120.4C18—C13—C14119.2 (6)
C1—C2—H2120.4C12—C13—C14122.9 (6)
C2—C3—C4120.7 (7)C15—C14—C13120.1 (7)
C2—C3—H3119.6C15—C14—H14119.9
C4—C3—H3119.6C13—C14—H14119.9
C5—C4—C3121.2 (6)C14—C15—C16120.8 (7)
C5—C4—H4119.4C14—C15—H15119.6
C3—C4—H4119.4C16—C15—H15119.6
C4—C5—C6120.1 (7)C17—C16—C15120.9 (7)
C4—C5—H5120.0C17—C16—H16119.6
C6—C5—H5120.0C15—C16—H16119.6
C7—C6—C1117.9 (5)C16—C17—C18118.8 (7)
C7—C6—C5123.3 (6)C16—C17—H17120.6
C1—C6—C5118.8 (6)C18—C17—H17120.6
C8—C7—C6120.3 (6)N2—C18—C13121.4 (5)
C8—C7—H7119.8N2—C18—C17118.3 (6)
C6—C7—H7119.8C13—C18—C17120.2 (6)
C7—C8—C9118.4 (6)C9—N1—C1119.3 (5)
C7—C8—H8120.8C9—N1—Zn1113.0 (4)
C9—C8—H8120.8C1—N1—Zn1127.0 (4)
N1—C9—C8123.0 (6)C10—N2—C18119.0 (5)
N1—C9—C10115.6 (5)C10—N2—Zn1113.4 (4)
C8—C9—C10121.4 (5)C18—N2—Zn1127.6 (4)
N2—C10—C11122.1 (5)N2—Zn1—N180.56 (18)
N2—C10—C9115.8 (5)N2—Zn1—Br2112.49 (14)
C11—C10—C9122.0 (5)N1—Zn1—Br2116.75 (13)
C12—C11—C10119.2 (6)N2—Zn1—Br1113.58 (14)
C12—C11—H11120.4N1—Zn1—Br1107.98 (15)
C10—C11—H11120.4Br2—Zn1—Br1119.24 (4)
N1—C1—C2—C3−179.4 (6)C12—C13—C18—C17178.1 (6)
C6—C1—C2—C3−0.3 (9)C14—C13—C18—C17−1.2 (9)
C1—C2—C3—C4−0.1 (10)C16—C17—C18—N2179.3 (6)
C2—C3—C4—C5−0.2 (11)C16—C17—C18—C130.8 (10)
C3—C4—C5—C60.8 (11)C8—C9—N1—C1−2.2 (9)
N1—C1—C6—C7−1.2 (9)C10—C9—N1—C1175.3 (5)
C2—C1—C6—C7179.8 (6)C8—C9—N1—Zn1168.5 (5)
N1—C1—C6—C5180.0 (6)C10—C9—N1—Zn1−13.9 (6)
C2—C1—C6—C50.9 (9)C6—C1—N1—C92.4 (8)
C4—C5—C6—C7−179.9 (7)C2—C1—N1—C9−178.5 (6)
C4—C5—C6—C1−1.2 (10)C6—C1—N1—Zn1−166.9 (4)
C1—C6—C7—C8−0.4 (9)C2—C1—N1—Zn112.2 (8)
C5—C6—C7—C8178.4 (6)C11—C10—N2—C181.3 (8)
C6—C7—C8—C90.6 (9)C9—C10—N2—C18−177.3 (5)
C7—C8—C9—N10.7 (9)C11—C10—N2—Zn1180.0 (4)
C7—C8—C9—C10−176.7 (6)C9—C10—N2—Zn11.4 (6)
N1—C9—C10—N28.6 (7)C13—C18—N2—C10−0.8 (8)
C8—C9—C10—N2−173.8 (5)C17—C18—N2—C10−179.3 (6)
N1—C9—C10—C11−170.0 (5)C13—C18—N2—Zn1−179.3 (4)
C8—C9—C10—C117.6 (9)C17—C18—N2—Zn12.3 (8)
N2—C10—C11—C12−0.6 (9)C10—N2—Zn1—N1−6.6 (4)
C9—C10—C11—C12177.9 (5)C18—N2—Zn1—N1171.8 (5)
C10—C11—C12—C13−0.6 (9)C10—N2—Zn1—Br2−121.8 (4)
C11—C12—C13—C181.1 (9)C18—N2—Zn1—Br256.7 (5)
C11—C12—C13—C14−179.6 (6)C10—N2—Zn1—Br199.0 (4)
C18—C13—C14—C150.2 (10)C18—N2—Zn1—Br1−82.6 (5)
C12—C13—C14—C15−179.1 (7)C9—N1—Zn1—N211.4 (4)
C13—C14—C15—C161.3 (12)C1—N1—Zn1—N2−178.7 (5)
C14—C15—C16—C17−1.8 (13)C9—N1—Zn1—Br2121.9 (4)
C15—C16—C17—C180.7 (12)C1—N1—Zn1—Br2−68.2 (5)
C12—C13—C18—N2−0.4 (9)C9—N1—Zn1—Br1−100.4 (4)
C14—C13—C18—N2−179.7 (5)C1—N1—Zn1—Br169.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···Br2i0.932.873.574 (7)133

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2.

Table 3 Cg···Cg π—π interactions [Cg1, Cg2, Cg3, Cg5, Cg5 = centroids of rings Zn1/N1/C9/C10/N2; N1/C1/C6/C7/C8/C9; N2/C10/C11/C12/C13/C18; C1–C6; C13–C18; Symmetry codes: (i) 1-x, 1-y, -z; (ii) 1-x, 2-y, -z; (iii) 2-x, 1-y, -z] Cg(I) Cg(J) Cg···Cg (Å)

Cg1Cg43.775 (4)i
Cg2Cg23.748 (4)i
Cg2Cg43.735 (4)i
Cg3Cg33.538 (4)ii
Cg3Cg53.678 (4)ii
Cg4Cg43.513 (4)iii

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2062).

References

  • Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311. [PMC free article] [PubMed]
  • Bowmaker, G.A., Effendy, Marfuah, S., Skelton, B.W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4371–4388.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J. & Sinn, E. (1977). Inorg. Chem.16, 2334–2343.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396–2406.
  • Moreno, Y., Salgado, Y., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m487–m489. [PubMed]
  • Muranishi, Y., Wang, Y., Odoko, M. & Okabe, N. (2005). Acta Cryst. C61, m307–m310. [PubMed]
  • Okabe, N. & Muranishi, Y. (2005). Acta Cryst. E61, m2332–m2334.
  • Rahimi, N., Safari, N., Amani, V. & Khavasi, H. R. (2009). Acta Cryst. E65, m1370. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y., Matsumura-Inoue, T., Takashima, H. & Tsukahara, K. (2003). Acta Cryst. E59, m551–m552.
  • Zhou, R. & Ng, S. W. (2006). Acta Cryst. E62, m1691–m1692.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography