PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3311.
Published online 2010 November 27. doi:  10.1107/S1600536810046660
PMCID: PMC3011674

2-(Methyl­sulfin­yl)benzamide

Abstract

In the crystal of the title compound, C8H9NO2S, synthesized by the oxidation of 2-(methyl­sulfan­yl)benzamide using NaOCl with 2,2,6,6-tetra­methyl­piperidyl-1-oxy (TEMPO) as the catalyst, mol­ecules are linked via inter­molecular N—H(...)Oamide hydrogen bonds, forming centrosymmetric amide–amide dimers which are extended into a two-dimensional lamellar framework parallel to (100) through amide–sulfinyl N—H(...)O hydrogen bonds. The benzene ring forms a dihedral angle of 25.6 (2)° with the amide group

Related literature

For general background to sulfoxides, see: Hernández-Torres et al. (2008 [triangle]); Padmanabhan et al. (2000 [triangle]); Nieves & Lang (2002 [triangle]); Wedel et al. (2008 [triangle]); Melzig et al. (2009 [triangle]); Huang et al. (2006 [triangle], 2010 [triangle]). For selective oxidation of sulfides to sulfoxides, see: Huang et al. (2006 [triangle]); Karimi et al. (2005 [triangle]); Kirihara et al. (2009 [triangle]); Ruff et al. (2009 [triangle]). For related structures, see: Kobayashi et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3311-scheme1.jpg

Experimental

Crystal data

  • C8H9NO2S
  • M r = 183.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3311-efi1.jpg
  • a = 11.8497 (5) Å
  • b = 5.0376 (2) Å
  • c = 14.8598 (6) Å
  • β = 104.856 (4)°
  • V = 857.39 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 293 K
  • 0.46 × 0.26 × 0.23 mm

Data collection

  • Oxford Diffraction Gemini Ultra CCD-detector diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.901, T max = 0.926
  • 3438 measured reflections
  • 1564 independent reflections
  • 1354 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.083
  • S = 1.05
  • 1564 reflections
  • 111 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: OLEX2 (Dolomanov et al., 2009 [triangle]); software used to prepare material for publication: OLEX2.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810046660/zs2076sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046660/zs2076Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Fund of Zhejiang Gongshang University (No. 10–3).

supplementary crystallographic information

Comment

Sulfoxides are versatile synthetic intermediates in stereocontrol chemistry (Hernández-Torres et al., 2008). They can be used to prepare chemically and biologically significant molecules, including therapeutic agents such as antiulcer (proton pump inhibitor), antibacterial, antifungal, antiatherosclerotic, antihypertensive, cardiotonic, psychotropic, and vasodilator agents (Padmanabhan et al., 2000; Nieves & Lang, 2002; Wedel et al., 2008; Melzig et al., 2009). The versatility of sulfoxides as organic reagents continually motivate the development of efficient synthesis methods for sulfoxides (Huang et al., 2006; Huang et al., 2010). Although many methods for the synthesis of sulfoxides have been investigated, selective oxidation of sulfides to sulfoxides still remains a challenging task (Karimi et al., 2005; Huang et al., 2006; Kirihara et al., 2009; Ruff et al., 2009). Herein, we report the synthesis and the crystal structure of a sulfoxide, viz. the title compound, C8H9NO2S (I). In the crystal structure (Fig. 1), the phenyl ring forms a dihedral angle of 25.6 (2)° with the amide group, similar to that found in benzamide (26.31°) (Kobayashi et al., 2003). The amide groups in (I) give intermolecular N—H···Oamide hydrogen-bonding interactions (Table 1) forming centrosymmetric amide–amide dimers which are extended into a two-dimensional lamellar framework parallel to (100), through amide N—H···Osulfinyl hydrogen bonds (Fig. 2).

Experimental

To a stirred solution of 2-(methylthio)benzamide (167 mg, 1.0 mmol) and the catalyst 2,2,6,6-tetramethylpiperidyl-1-oxy (TEMPO) (1.6 mg, 0.01 mmol) in CH2Cl2 (8 ml), Bu4NBr (16.1 mg, 0.05 mmol) and a saturated aqueous NaHCO3 solution (5 ml) containing KBr (11.9 mg, 0.1 mmol) were added. This mixture was cooled to 273 K, a solution of 0.73 M NaOCl (0.91 ml, 1.25 mmol) in saturated aqueous NaHCO3 was added dropwise over a period of 10 min. The mixture was stirred for a further 1 h at 273 K and for 0.5 h at room temperature. After the organic phase was separated, the aqueous phase was extracted with CH2Cl2 (3.5 ml) and the organic solution was washed with aqueous brine, dried over anhydrous Na2SO4 and filtered. The solvent was removed in vacuo and the residue was purified by chromatography on silica gel with ethyl acetate/hexane as an eluant to afford the title compound as a white solid (160 mg, 87%). Colorless crystals were obtained by vapor diffusion of hexane into an ethyl acetate solution of (I) over a period of 7 d.

1H NMR (400 MHz, CD3OD, 295 K) δ (p.p.m.) 8.20–8.18 (1H, m), 7.92–7.89 (1H, m), 7.85–7.81 (1H, m), 7.66–7.62 (1H, m), and 2.89 (3H, s). 13C NMR (400 MHz, CD3OD, 295 K) δ (p.p.m.) 168.9, 147.1, 132.4, 131.0, 130.5, 127.7, 123.4, and 43.7.

Refinement

H atoms bonded to C or N were placed in geometrically calculated positions and were refined using a riding model, with C–Haromatic = 0.93 Å, C—Hmethyl = 0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C,N).

Figures

Fig. 1.
A view of the title compound with showing atom numbering and with displacement ellipsoids drawn at the 30% probability level
Fig. 2.
The two-dimensional layered structure of the title compound.

Crystal data

C8H9NO2SF(000) = 384
Mr = 183.22Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2076 reflections
a = 11.8497 (5) Åθ = 2.8–29.3°
b = 5.0376 (2) ŵ = 0.33 mm1
c = 14.8598 (6) ÅT = 293 K
β = 104.856 (4)°Block, colorless
V = 857.39 (6) Å30.46 × 0.26 × 0.23 mm
Z = 4

Data collection

Oxford Diffraction Gemini Ultra CCD-detector diffractometer1564 independent reflections
Radiation source: fine-focus sealed tube1354 reflections with I > 2σ(I)
graphiteRint = 0.019
Detector resolution: 10.3592 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −4→6
Tmin = 0.901, Tmax = 0.926l = −14→17
3438 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.083w = 1/[σ2(Fo2) + (0.0391P)2 + 0.2897P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1564 reflectionsΔρmax = 0.25 e Å3
111 parametersΔρmin = −0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.70440 (4)0.05668 (9)0.75213 (3)0.03131 (18)
O10.78768 (11)−0.0190 (3)0.84272 (9)0.0493 (4)
O20.56496 (11)0.2416 (3)0.58587 (9)0.0443 (4)
N10.64197 (13)0.4202 (3)0.47654 (10)0.0415 (4)
H1A0.58430.52810.45880.050*
H1B0.69820.42210.44970.050*
C10.77553 (14)−0.0412 (3)0.66326 (12)0.0292 (4)
C20.86744 (15)−0.2174 (4)0.68979 (13)0.0400 (5)
H20.8878−0.28500.75000.048*
C30.92910 (16)−0.2930 (4)0.62648 (14)0.0463 (5)
H30.9904−0.41320.64400.056*
C40.89971 (16)−0.1907 (4)0.53778 (14)0.0449 (5)
H40.9409−0.24280.49520.054*
C50.80940 (16)−0.0109 (4)0.51166 (13)0.0393 (5)
H50.79110.05930.45180.047*
C60.74535 (14)0.0670 (3)0.57362 (11)0.0297 (4)
C70.59562 (16)−0.1977 (4)0.73172 (14)0.0418 (5)
H7A0.5457−0.17910.67000.063*
H7C0.5500−0.18210.77630.063*
H7B0.6328−0.36850.73790.063*
C80.64414 (14)0.2510 (4)0.54531 (11)0.0326 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0344 (3)0.0335 (3)0.0278 (3)0.00090 (18)0.01129 (18)−0.00260 (18)
O10.0443 (8)0.0777 (11)0.0256 (7)0.0052 (7)0.0086 (6)−0.0005 (7)
O20.0423 (7)0.0527 (8)0.0439 (8)0.0163 (6)0.0220 (6)0.0167 (7)
N10.0389 (9)0.0496 (10)0.0386 (9)0.0102 (8)0.0147 (7)0.0159 (8)
C10.0279 (8)0.0322 (9)0.0280 (9)−0.0001 (7)0.0084 (7)−0.0029 (7)
C20.0363 (10)0.0476 (12)0.0350 (10)0.0094 (9)0.0069 (8)0.0010 (9)
C30.0362 (10)0.0525 (13)0.0506 (12)0.0148 (9)0.0118 (9)−0.0032 (10)
C40.0399 (10)0.0554 (13)0.0455 (12)0.0041 (10)0.0221 (9)−0.0085 (10)
C50.0440 (10)0.0466 (11)0.0310 (10)0.0022 (9)0.0162 (8)−0.0005 (8)
C60.0300 (9)0.0317 (9)0.0282 (9)−0.0017 (7)0.0088 (7)−0.0019 (7)
C70.0428 (10)0.0370 (11)0.0498 (11)−0.0030 (9)0.0195 (9)0.0003 (9)
C80.0350 (9)0.0359 (10)0.0269 (9)0.0009 (8)0.0080 (7)−0.0009 (8)

Geometric parameters (Å, °)

S1—O11.5000 (13)C3—C41.374 (3)
S1—C71.7875 (19)C3—H30.9300
S1—C11.8078 (17)C4—C51.380 (3)
O2—C81.239 (2)C4—H40.9300
N1—C81.326 (2)C5—C61.391 (2)
N1—H1A0.8600C5—H50.9300
N1—H1B0.8600C6—C81.488 (2)
C1—C21.382 (3)C7—H7A0.9600
C1—C61.398 (2)C7—H7C0.9600
C2—C31.384 (3)C7—H7B0.9600
C2—H20.9300
O1—S1—C7104.47 (9)C5—C4—H4119.9
O1—S1—C1105.28 (8)C4—C5—C6120.95 (17)
C7—S1—C197.56 (8)C4—C5—H5119.5
C8—N1—H1A120.0C6—C5—H5119.5
C8—N1—H1B120.0C5—C6—C1118.09 (16)
H1A—N1—H1B120.0C5—C6—C8121.68 (15)
C2—C1—C6120.83 (16)C1—C6—C8120.18 (15)
C2—C1—S1116.60 (13)S1—C7—H7A109.5
C6—C1—S1122.44 (13)S1—C7—H7C109.5
C1—C2—C3119.85 (17)H7A—C7—H7C109.5
C1—C2—H2120.1S1—C7—H7B109.5
C3—C2—H2120.1H7A—C7—H7B109.5
C4—C3—C2120.01 (18)H7C—C7—H7B109.5
C4—C3—H3120.0O2—C8—N1122.13 (16)
C2—C3—H3120.0O2—C8—C6119.62 (15)
C3—C4—C5120.24 (17)N1—C8—C6118.24 (15)
C3—C4—H4119.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.082.934 (2)175
N1—H1B···O1ii0.862.182.991 (2)157

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2076).

References

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  • Hernández-Torres, G., Urbano, A. & Colobert, F. (2008). Eur. J. Org. Chem. pp. 2035–2038.
  • Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2006). Tetrahedron Lett.47, 5637–5640.
  • Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2010). J. Carbohydr. Chem.29, 142–153.
  • Karimi, B., Maryam, G.-N. & Clark, J. H. (2005). Org. Lett.7, 625–628. [PubMed]
  • Kirihara, M., Yamamoto, J., Noguchi, T. & Hirai, Y. (2009). Tetrahedron Lett.50, 1180–1183.
  • Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc.125, 3035–3045. [PubMed]
  • Melzig, L., Rauhut, C. B. & Knochel, P. (2009). Chem. Commun. pp. 3536–3538. [PubMed]
  • Nieves, A. V. & Lang, A. E. (2002). Neuropharmacology, 25, 111–114. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England
  • Padmanabhan, S., Lavin, R. C. & Durant, G. J. (2000). Tetrahedron Asymmetry, 11, 3455–4357.
  • Ruff, F., Fábián, A., Farkas, Ö. & Kucsman, Á. (2009). Eur. J. Org. Chem.13, 2102–2111.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wedel, T., Gehring, T., Podlech, J., Kordel, E., Bihlmeier, A. & Klopper, W. (2008). Chem. Eur. J.14, 4631–4639. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography