PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3108.
Published online 2010 November 10. doi:  10.1107/S1600536810044983
PMCID: PMC3011673

5-Diethyl­amino-2-{[2-(2,4-dinitro­phen­yl)hydrazin-1-yl­idene]meth­yl}phenol

Abstract

In the title compound, C17H19N5O5, obtained from the condensation reaction of 4-diethyl­amino-2-hy­droxy­benzalde­hyde and 2,4-dinitro­phenyl­hydrazine, the two benzene rings are twisted by a dihedral angle of 1.75 (12)°. The nitro groups are slightly twisted with the respect to the benzene ring to which they are attached, making dihedral angles of 8.20 (15) and 5.78 (15)°. An intra­molecular O—H(...)N hydrogen bond occurs. In the crystal, mol­ecules are linked by pairs of inter­molecular N—H(...)O hydrogen bonds, forming dimers through R 2 2(12) rings. These dimers are further linked by C—H(...)O and C—H(...)π and weak slipped π–π inter­actions [centroid–centroid distance = 3.743 (2)Å]. One of the ethyl groups is disordered over two positions, with occupancy factors in the ratio 0.72:0.28.

Related literature

For related structures, see: Baughman et al. (2004 [triangle]); Kuleshova et al. (2003 [triangle]); Ohba (1996 [triangle]); Okabe et al. (1993 [triangle]); Szczesna & Urbanczyk-Lipkowska (2002 [triangle]); Zhen & Han (2005 [triangle]). For discussion of hydrogen-bonding patterns, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3108-scheme1.jpg

Experimental

Crystal data

  • C17H19N5O5
  • M r = 373.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3108-efi1.jpg
  • a = 8.5300 (7) Å
  • b = 8.5410 (4) Å
  • c = 12.4910 (11) Å
  • α = 84.554 (7)°
  • β = 89.733 (6)°
  • γ = 75.109 (7)°
  • V = 875.31 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.22 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.975, T max = 0.980
  • 5395 measured reflections
  • 3069 independent reflections
  • 1727 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.125
  • S = 0.95
  • 3069 reflections
  • 257 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810044983/dn2616sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044983/dn2616Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2,4-Dinitrophenylhydrazine is a reagent which is widely used for condensation with aldehydes and ketones. Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents(Okabe et al. 1993). Structural information for phenylhydrazone derivatives is useful in studying their coordination properties. As part of our work, we have synthesized the title compound and report the crystal structure.

The molecule is coplanar, the two phenyl rings are only twisted by a dihedral angle of 1.75 (12)°. Bond lengths and bond angles agree with those of other dinitrophenylhydrazone derivatives(Ohba,1996; Baughman et al., 2004; Kuleshova et al., 2003; Szczesna & Urbanczyk-Lipkowska, 2002; Zhen & Han, 2005)

There are intramolecular N—H···O hydrogen bond within the hydrazone molecules. Molecules are linked two by two by intermolecular N—H···O hydrogen bonds (Table 1, Fig. 1) which form a R22(12) ring (Etter et al., 1990; Bernstein et al., 1995). These dimer are further linked by C-H···O, C-H···π (Table 1) and by weak slippest π-π interactions [centroid to centroid = 3.743 (2)Å, interplanar distance = 3.42Å and offset angle= 24°]

Experimental

2,4-dinitrophenylhydrazine (1 mmol, 0.198 g) was dissolved in anhydrous ethanol (10 ml), H2SO4(98%, 0.5 ml) was then added and The mixture was stirred for several minitutes at 351k, 4-(diethylamino)-2-hydroxybenzaldehyde (1 mmol, 0.193 g) in ethanol (10 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from DMF, red single crystals of (I) was obtained after one month.

Refinement

All H atoms were positioned geometrically and refined as riding with C—H=0.93 (aromatic), 0.97(methylene), 0.96 Å(methyl) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(CH, CH2 or NH) and Uiso(H)=1.5Ueq(CH3).

The C15 atom is distributed over two positions C15 and C15B. The occupancy factor with the sum of the occupancy factor constraints to be 1.0, was first refined using a overall isotropic thermal parameter for the two carbon atoms. Once the occupancy factor has been determined, it was fixed and the isotropic thermal parameters were freely refined. The geometry of the ethyl has been kept chemically reasonable using restraints (SAME, Sheldrick, 2008). Using such disoredered model improved greatly the refinement.

Figures

Fig. 1.
Molecular view of I with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered ethyl group is shown. H atoms are represented as small spheres of arbitrary radii. Intramolecular ...
Fig. 2.
Partial packing view showing the formation of the R22(12) ring. H atoms not involved in the hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) -x-1, -y+2, -z+1]

Crystal data

C17H19N5O5Z = 2
Mr = 373.37F(000) = 392
Triclinic, P1Dx = 1.417 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5300 (7) ÅCell parameters from 2780 reflections
b = 8.5410 (4) Åθ = 3.0–25.0°
c = 12.4910 (11) ŵ = 0.11 mm1
α = 84.554 (7)°T = 293 K
β = 89.733 (6)°Block, red
γ = 75.109 (7)°0.22 × 0.19 × 0.17 mm
V = 875.31 (11) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3069 independent reflections
Radiation source: fine-focus sealed tube1727 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −10→10
Tmin = 0.975, Tmax = 0.980k = −10→9
5395 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.95w = 1/[σ2(Fo2) + (0.0449P)2] where P = (Fo2 + 2Fc2)/3
3069 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.25187 (19)0.6271 (3)0.50881 (14)0.0542 (6)
H10.17460.68620.53690.081*
O2−0.5619 (2)1.2021 (3)0.72130 (18)0.0859 (9)
O3−0.4850 (2)1.0820 (3)0.57933 (16)0.0674 (7)
O4−0.1960 (3)1.2721 (3)0.98125 (17)0.0822 (8)
O50.0601 (3)1.1684 (3)0.96747 (16)0.0757 (7)
N1−0.0540 (2)0.8040 (3)0.52221 (16)0.0361 (5)
N2−0.1829 (2)0.9124 (3)0.56372 (15)0.0380 (6)
H2−0.27680.93520.53260.046*
N3−0.4544 (3)1.1282 (3)0.6656 (2)0.0510 (7)
N4−0.0803 (3)1.1929 (3)0.93582 (19)0.0538 (7)
N50.3830 (2)0.2866 (3)0.22459 (17)0.0418 (6)
C140.3429 (3)0.2320 (4)0.1233 (2)0.0612 (9)0.72
H14A0.41000.12230.11940.073*0.72
H14B0.23120.22530.12680.073*0.72
C150.3598 (5)0.3248 (6)0.0249 (3)0.0738 (14)0.72
H15A0.47110.32710.01670.111*0.72
H15B0.29320.43400.02580.111*0.72
H15C0.32630.2760−0.03420.111*0.72
C14B0.3429 (3)0.2320 (4)0.1233 (2)0.0612 (9)0.28
H14C0.26530.16840.14070.073*0.28
H14D0.28420.32920.07960.073*0.28
C15B0.4529 (12)0.1441 (16)0.0563 (9)0.067 (3)0.28
H15D0.40030.1415−0.01100.101*0.28
H15E0.49440.03500.08920.101*0.28
H15F0.54070.19440.04410.101*0.28
C10.0349 (3)0.6209 (3)0.38800 (18)0.0316 (6)
C20.1988 (3)0.5694 (3)0.42192 (19)0.0347 (7)
C30.3117 (3)0.4608 (3)0.36813 (19)0.0372 (7)
H30.41880.42910.39310.045*
C40.2693 (3)0.3972 (3)0.27695 (19)0.0340 (6)
C50.1057 (3)0.4485 (3)0.24127 (19)0.0378 (7)
H50.07330.40940.18030.045*
C6−0.0054 (3)0.5558 (3)0.29623 (19)0.0378 (7)
H6−0.11270.58680.27150.045*
C7−0.0867 (3)0.7351 (3)0.4408 (2)0.0353 (7)
H7−0.19340.76030.41520.042*
C8−0.1625 (3)0.9827 (3)0.65262 (19)0.0325 (6)
C9−0.2895 (3)1.0890 (3)0.7042 (2)0.0349 (6)
C10−0.2620 (3)1.1567 (3)0.79614 (19)0.0388 (7)
H10−0.34751.22540.82880.047*
C11−0.1096 (3)1.1223 (3)0.83856 (19)0.0379 (7)
C120.0190 (3)1.0181 (4)0.7912 (2)0.0476 (8)
H120.12290.99490.82130.057*
C13−0.0069 (3)0.9507 (3)0.7016 (2)0.0420 (7)
H130.08030.88110.67110.050*
C160.5551 (3)0.2546 (4)0.2534 (2)0.0504 (8)
H16A0.61380.15670.22260.060*
H16B0.56750.23360.33100.060*
C170.6308 (3)0.3901 (4)0.2167 (2)0.0611 (9)
H17A0.61770.41340.14010.092*
H17B0.74430.35820.23560.092*
H17C0.57900.48560.25080.092*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0419 (11)0.0745 (17)0.0458 (12)−0.0051 (11)−0.0017 (9)−0.0321 (11)
O20.0393 (11)0.118 (2)0.0921 (17)0.0162 (12)−0.0029 (11)−0.0701 (16)
O30.0473 (11)0.0875 (18)0.0636 (14)0.0035 (11)−0.0156 (10)−0.0452 (13)
O40.0799 (16)0.102 (2)0.0634 (15)−0.0050 (14)0.0036 (13)−0.0537 (14)
O50.0664 (14)0.102 (2)0.0637 (14)−0.0249 (13)−0.0202 (12)−0.0256 (14)
N10.0338 (12)0.0365 (14)0.0357 (12)−0.0033 (10)0.0072 (10)−0.0090 (11)
N20.0330 (12)0.0389 (15)0.0385 (13)0.0000 (10)0.0015 (10)−0.0117 (11)
N30.0367 (13)0.0542 (18)0.0583 (16)0.0033 (12)−0.0024 (12)−0.0271 (14)
N40.0623 (17)0.0568 (19)0.0433 (15)−0.0149 (14)−0.0056 (14)−0.0109 (13)
N50.0365 (12)0.0470 (16)0.0454 (14)−0.0113 (11)0.0070 (11)−0.0209 (12)
C140.0525 (18)0.078 (3)0.056 (2)−0.0138 (17)0.0129 (16)−0.0328 (19)
C150.084 (3)0.083 (4)0.058 (3)−0.031 (3)0.006 (2)0.000 (3)
C14B0.0525 (18)0.078 (3)0.056 (2)−0.0138 (17)0.0129 (16)−0.0328 (19)
C15B0.057 (7)0.083 (10)0.074 (8)−0.021 (6)0.036 (6)−0.061 (7)
C10.0313 (14)0.0314 (16)0.0318 (14)−0.0073 (12)0.0025 (11)−0.0034 (12)
C20.0376 (15)0.0386 (18)0.0307 (15)−0.0125 (13)0.0020 (12)−0.0089 (13)
C30.0272 (13)0.0469 (18)0.0362 (15)−0.0047 (12)0.0013 (12)−0.0107 (13)
C40.0352 (14)0.0326 (17)0.0364 (15)−0.0114 (12)0.0064 (12)−0.0066 (13)
C50.0373 (15)0.0395 (17)0.0386 (15)−0.0096 (13)0.0012 (12)−0.0143 (13)
C60.0300 (14)0.0413 (18)0.0415 (16)−0.0068 (12)−0.0020 (12)−0.0080 (14)
C70.0327 (14)0.0348 (17)0.0368 (15)−0.0048 (12)0.0016 (12)−0.0068 (13)
C80.0365 (15)0.0282 (16)0.0312 (14)−0.0054 (12)0.0028 (12)−0.0036 (12)
C90.0299 (14)0.0336 (17)0.0388 (15)−0.0027 (12)−0.0002 (12)−0.0078 (13)
C100.0366 (15)0.0381 (18)0.0385 (16)−0.0017 (13)0.0024 (13)−0.0094 (13)
C110.0436 (16)0.0413 (18)0.0295 (15)−0.0109 (13)−0.0022 (13)−0.0072 (13)
C120.0344 (15)0.058 (2)0.0458 (17)−0.0043 (14)−0.0064 (13)−0.0065 (16)
C130.0356 (15)0.0456 (19)0.0414 (16)−0.0018 (13)0.0035 (13)−0.0110 (14)
C160.0351 (15)0.049 (2)0.066 (2)−0.0040 (14)0.0092 (14)−0.0243 (16)
C170.0512 (18)0.070 (2)0.068 (2)−0.0201 (17)0.0168 (16)−0.0263 (18)

Geometric parameters (Å, °)

O1—C21.359 (3)C1—C21.408 (3)
O1—H10.8200C1—C71.434 (3)
O2—N31.226 (3)C2—C31.376 (3)
O3—N31.234 (3)C3—C41.395 (3)
O4—N41.216 (3)C3—H30.9300
O5—N41.223 (3)C4—C51.412 (3)
N1—C71.288 (3)C5—C61.369 (3)
N1—N21.377 (3)C5—H50.9300
N2—C81.344 (3)C6—H60.9300
N2—H20.8600C7—H70.9300
N3—C91.434 (3)C8—C131.414 (3)
N4—C111.457 (3)C8—C91.419 (3)
N5—C41.379 (3)C9—C101.381 (3)
N5—C141.460 (3)C10—C111.356 (3)
N5—C161.462 (3)C10—H100.9300
C14—C151.426 (5)C11—C121.391 (4)
C14—H14A0.9700C12—C131.351 (3)
C14—H14B0.9700C12—H120.9300
C15—H15A0.9600C13—H130.9300
C15—H15B0.9600C16—C171.500 (4)
C15—H15C0.9600C16—H16A0.9700
C15B—H15D0.9600C16—H16B0.9700
C15B—H15E0.9600C17—H17A0.9600
C15B—H15F0.9600C17—H17B0.9600
C1—C61.402 (3)C17—H17C0.9600
C2—O1—H1109.5C4—C5—H5119.9
C7—N1—N2116.1 (2)C5—C6—C1123.1 (2)
C8—N2—N1120.3 (2)C5—C6—H6118.5
C8—N2—H2119.8C1—C6—H6118.5
N1—N2—H2119.8N1—C7—C1122.6 (2)
O2—N3—O3121.8 (2)N1—C7—H7118.7
O2—N3—C9118.9 (2)C1—C7—H7118.7
O3—N3—C9119.3 (2)N2—C8—C13120.1 (2)
O4—N4—O5123.6 (3)N2—C8—C9124.3 (2)
O4—N4—C11118.6 (3)C13—C8—C9115.7 (2)
O5—N4—C11117.8 (3)C10—C9—C8121.9 (2)
C4—N5—C14121.1 (2)C10—C9—N3116.3 (2)
C4—N5—C16119.8 (2)C8—C9—N3121.8 (2)
C14—N5—C16117.2 (2)C11—C10—C9119.6 (2)
C15—C14—N5119.0 (3)C11—C10—H10120.2
C15—C14—H14A107.6C9—C10—H10120.2
N5—C14—H14A107.6C10—C11—C12120.8 (3)
C15—C14—H14B107.6C10—C11—N4119.7 (2)
N5—C14—H14B107.6C12—C11—N4119.6 (2)
H14A—C14—H14B107.0C13—C12—C11120.1 (2)
H15D—C15B—H15E109.5C13—C12—H12120.0
H15D—C15B—H15F109.5C11—C12—H12120.0
H15E—C15B—H15F109.5C12—C13—C8122.1 (3)
C6—C1—C2116.0 (2)C12—C13—H13119.0
C6—C1—C7120.4 (2)C8—C13—H13119.0
C2—C1—C7123.6 (2)N5—C16—C17114.4 (2)
O1—C2—C3117.4 (2)N5—C16—H16A108.7
O1—C2—C1121.0 (2)C17—C16—H16A108.7
C3—C2—C1121.7 (2)N5—C16—H16B108.7
C2—C3—C4121.5 (2)C17—C16—H16B108.7
C2—C3—H3119.3H16A—C16—H16B107.6
C4—C3—H3119.3C16—C17—H17A109.5
N5—C4—C3121.0 (2)C16—C17—H17B109.5
N5—C4—C5121.4 (2)H17A—C17—H17B109.5
C3—C4—C5117.6 (2)C16—C17—H17C109.5
C6—C5—C4120.1 (2)H17A—C17—H17C109.5
C6—C5—H5119.9H17B—C17—H17C109.5
C7—N1—N2—C8175.9 (2)N1—N2—C8—C9−176.6 (2)
C4—N5—C14—C1586.9 (4)N2—C8—C9—C10179.3 (2)
C16—N5—C14—C15−77.4 (4)C13—C8—C9—C100.1 (4)
C6—C1—C2—O1178.8 (2)N2—C8—C9—N31.3 (4)
C7—C1—C2—O1−0.2 (4)C13—C8—C9—N3−177.9 (2)
C6—C1—C2—C3−0.3 (3)O2—N3—C9—C10−8.1 (4)
C7—C1—C2—C3−179.3 (2)O3—N3—C9—C10174.4 (2)
O1—C2—C3—C4−178.8 (2)O2—N3—C9—C8170.0 (3)
C1—C2—C3—C40.3 (4)O3—N3—C9—C8−7.5 (4)
C14—N5—C4—C3−173.9 (2)C8—C9—C10—C110.5 (4)
C16—N5—C4—C3−10.0 (4)N3—C9—C10—C11178.6 (2)
C14—N5—C4—C57.0 (4)C9—C10—C11—C12−0.8 (4)
C16—N5—C4—C5170.8 (2)C9—C10—C11—N4−179.7 (2)
C2—C3—C4—N5−179.0 (2)O4—N4—C11—C105.3 (4)
C2—C3—C4—C50.2 (4)O5—N4—C11—C10−175.0 (2)
N5—C4—C5—C6178.5 (2)O4—N4—C11—C12−173.7 (3)
C3—C4—C5—C6−0.6 (4)O5—N4—C11—C126.0 (4)
C4—C5—C6—C10.6 (4)C10—C11—C12—C130.4 (4)
C2—C1—C6—C5−0.1 (4)N4—C11—C12—C13179.4 (2)
C7—C1—C6—C5178.9 (2)C11—C12—C13—C80.2 (4)
N2—N1—C7—C1179.2 (2)N2—C8—C13—C12−179.7 (2)
C6—C1—C7—N1−176.6 (2)C9—C8—C13—C12−0.4 (4)
C2—C1—C7—N12.3 (4)C4—N5—C16—C17−72.3 (3)
N1—N2—C8—C132.6 (3)C14—N5—C16—C1792.2 (3)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.952.672 (3)146
N2—H2···O3i0.862.513.344 (3)162
C15—H15B···O4ii0.962.433.359 (6)164
C14—H14C···Cg2iii0.962.713.620 (4)157

Symmetry codes: (i) −x−1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2616).

References

  • Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kuleshova, L. N., Antipin, M. Yu., Khrustalev, V. N., Gusev, D. V., Grintselev-Knyazev, G. V. & Bobrikova, E. S. (2003). Kristallografiya, 48, 645–652.
  • Ohba, S. (1996). Acta Cryst. C52, 2118–2119.
  • Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Szczesna, B. & Urbanczyk-Lipkowska, Z. (2002). New J. Chem.26, 243–249..
  • Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o3721–o3722.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography