PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3184.
Published online 2010 November 13. doi:  10.1107/S1600536810046532
PMCID: PMC3011669

5,6-Diamino-1,3-benzodithiole-2-thione

Abstract

The mol­ecule of the title compound, C7H6N2S3, is almost planar, the dihedral angle between the benzene plane and the 1,3-dithiole-2-thione plane being 2.21 (6)°. In the crystal, mol­ecules are linked by inter­molecular N—H(...)S and N—H(...)N hydrogen bonds into a three-dimensional network. The crystal packing also exhibits weak inter­molecular S(...)S inter­actions [3.5681 (9) Å].

Related literature

For background to tetra­thio­fulvalene and its derivatives, see: Yamada & Sugimoto (2004 [triangle]). For the synthesis and properties of tetra­thio­fulvalene and its derivatives, see: Otsubo & Takimiya (2004 [triangle]); Krief (1986 [triangle]); Jia et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3184-scheme1.jpg

Experimental

Crystal data

  • C7H6N2S3
  • M r = 214.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3184-efi1.jpg
  • a = 5.7695 (9) Å
  • b = 7.6130 (11) Å
  • c = 19.993 (3) Å
  • β = 94.265 (2)°
  • V = 875.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 291 K
  • 0.35 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.910, T max = 0.961
  • 4517 measured reflections
  • 1702 independent reflections
  • 1521 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.097
  • S = 1.00
  • 1702 reflections
  • 133 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810046532/rz2516sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810046532/rz2516Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Tetrathiofulvalene (TTF) and its derivatives are successfully used as versatile building blocks for charge-transfer salts, giving rise to organic conductors and superconductors because of their unique π-donor properties (Yamada & Sugimoto, 2004). Extensive reviews on the synthesis and properties of TTF and its derivatives have been published (Otsubo & Takimiya, 2004; Krief, 1986). 1,3-Dithiole-2-thiones are a key intermediates in TTF synthesis routes (Jia et al., 2007). The synthesis and crystal structure of the title compound is reported herein.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the benzene plane and the 1,3-dithiole-2-thione plane is 2.21 (6)°. The moleculess are linked by the intermolecular N–H···S and N–H···N hydrogen bonds (Table 1) and S···S weak interactions (3.5681 (9) Å) into a three-dimensional network (Fig. 2).

Experimental

1,2-Diaminobenzene-4,5-bis(thiocyanate) (10 mmol) was added to a degassed solution of Na2S.9H2O (33 mmol) in water (100 mL), and the mixture was heated to 70 °C for an hour to produce a clear brownish solution. The mixture was cooled to 50 °C, and CS2 (1.4 ml, 23.2 mmol) was slowly added dropwise. The mixture was stirred for two hours at 50 °C and for further three hours at room temperature. The precipitate was filtered off, washed with water, and air-dried. The crude product was purified by flash column chromatography to give the title compound as a yellow powder (yield 50%). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature for two weeks.

Refinement

All H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Crystal packing of the title compound viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C7H6N2S3F(000) = 440
Mr = 214.35Dx = 1.626 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2863 reflections
a = 5.7695 (9) Åθ = 3.1–27.3°
b = 7.6130 (11) ŵ = 0.79 mm1
c = 19.993 (3) ÅT = 291 K
β = 94.265 (2)°Block, yellow
V = 875.7 (2) Å30.35 × 0.10 × 0.05 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1702 independent reflections
Radiation source: sealed tube1521 reflections with I > 2σ(I)
graphiteRint = 0.029
phi and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −6→7
Tmin = 0.910, Tmax = 0.961k = −9→9
4517 measured reflectionsl = −20→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0558P)2 + 0.4807P] where P = (Fo2 + 2Fc2)/3
1702 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5326 (4)0.8170 (3)0.39432 (11)0.0350 (5)
C20.3149 (4)0.8999 (3)0.37772 (11)0.0334 (4)
C30.2459 (4)0.9342 (3)0.31133 (11)0.0316 (4)
C40.3887 (3)0.8872 (3)0.26093 (10)0.0305 (4)
C50.6025 (4)0.8080 (3)0.27734 (10)0.0312 (4)
C60.6739 (4)0.7722 (3)0.34410 (11)0.0332 (4)
C70.5787 (4)0.8467 (3)0.14729 (11)0.0369 (5)
H30.097 (5)0.992 (3)0.3011 (12)0.038 (6)*
H60.820 (4)0.719 (3)0.3564 (12)0.040 (6)*
H1A0.724 (6)0.720 (4)0.4636 (16)0.073 (10)*
H2A0.490 (7)0.760 (4)0.4841 (17)0.066 (10)*
H3A0.250 (5)0.978 (4)0.4623 (15)0.058 (9)*
H4A0.060 (6)0.999 (4)0.4153 (15)0.057 (8)*
N10.6017 (4)0.7889 (3)0.46186 (11)0.0482 (5)
N20.1723 (4)0.9361 (3)0.42920 (11)0.0465 (5)
S10.32535 (10)0.93005 (7)0.17590 (3)0.03893 (19)
S20.76856 (9)0.76272 (7)0.20996 (3)0.03781 (19)
S30.63040 (13)0.84730 (10)0.06737 (3)0.0540 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0329 (11)0.0347 (10)0.0364 (11)0.0004 (8)−0.0046 (8)0.0003 (8)
C20.0290 (10)0.0325 (10)0.0383 (11)0.0010 (8)0.0003 (8)−0.0026 (8)
C30.0246 (10)0.0318 (10)0.0380 (11)0.0016 (8)−0.0013 (8)−0.0015 (8)
C40.0274 (10)0.0288 (9)0.0347 (10)−0.0011 (8)−0.0011 (8)0.0014 (8)
C50.0274 (10)0.0276 (9)0.0385 (11)−0.0005 (8)0.0006 (8)−0.0028 (8)
C60.0261 (10)0.0326 (10)0.0399 (11)0.0047 (8)−0.0037 (8)0.0011 (8)
C70.0378 (12)0.0344 (11)0.0382 (12)−0.0078 (9)0.0023 (9)−0.0027 (8)
N10.0430 (13)0.0641 (13)0.0362 (11)0.0132 (11)−0.0044 (9)0.0018 (10)
N20.0384 (11)0.0626 (14)0.0382 (11)0.0120 (10)0.0008 (9)−0.0053 (10)
S10.0351 (3)0.0450 (3)0.0360 (3)0.0018 (2)−0.0018 (2)0.0058 (2)
S20.0304 (3)0.0421 (3)0.0412 (3)0.0014 (2)0.0044 (2)−0.0036 (2)
S30.0592 (4)0.0666 (4)0.0368 (4)−0.0103 (3)0.0088 (3)−0.0028 (3)

Geometric parameters (Å, °)

C1—C61.382 (3)C5—S21.745 (2)
C1—N11.396 (3)C6—H60.95 (3)
C1—C21.423 (3)C7—S31.647 (2)
C2—C31.382 (3)C7—S21.725 (2)
C2—N21.392 (3)C7—S11.730 (2)
C3—C41.395 (3)N1—H1A0.88 (4)
C3—H30.97 (3)N1—H2A0.84 (4)
C4—C51.390 (3)N2—H3A0.83 (3)
C4—S11.743 (2)N2—H4A0.84 (3)
C5—C61.394 (3)
C6—C1—N1121.6 (2)C1—C6—C5119.9 (2)
C6—C1—C2119.9 (2)C1—C6—H6118.4 (14)
N1—C1—C2118.5 (2)C5—C6—H6121.7 (15)
C3—C2—N2121.9 (2)S3—C7—S2123.70 (14)
C3—C2—C1119.6 (2)S3—C7—S1122.57 (14)
N2—C2—C1118.4 (2)S2—C7—S1113.73 (13)
C2—C3—C4120.15 (19)C1—N1—H1A108 (2)
C2—C3—H3118.3 (14)C1—N1—H2A112 (2)
C4—C3—H3121.6 (14)H1A—N1—H2A118 (3)
C5—C4—C3120.12 (19)C2—N2—H3A110 (2)
C5—C4—S1115.43 (16)C2—N2—H4A111 (2)
C3—C4—S1124.37 (16)H3A—N2—H4A114 (3)
C4—C5—C6120.3 (2)C7—S1—C497.64 (10)
C4—C5—S2115.60 (16)C7—S2—C597.59 (10)
C6—C5—S2124.07 (16)
C6—C1—C2—C30.3 (3)N1—C1—C6—C5−177.7 (2)
N1—C1—C2—C3178.0 (2)C2—C1—C6—C5−0.2 (3)
C6—C1—C2—N2177.2 (2)C4—C5—C6—C1−0.6 (3)
N1—C1—C2—N2−5.2 (3)S2—C5—C6—C1178.36 (16)
N2—C2—C3—C4−176.5 (2)S3—C7—S1—C4180.00 (14)
C1—C2—C3—C40.2 (3)S2—C7—S1—C40.34 (13)
C2—C3—C4—C5−1.0 (3)C5—C4—S1—C70.28 (17)
C2—C3—C4—S1−177.76 (16)C3—C4—S1—C7177.22 (18)
C3—C4—C5—C61.1 (3)S3—C7—S2—C5179.66 (14)
S1—C4—C5—C6178.20 (16)S1—C7—S2—C5−0.69 (13)
C3—C4—C5—S2−177.88 (15)C4—C5—S2—C70.90 (17)
S1—C4—C5—S2−0.8 (2)C6—C5—S2—C7−178.06 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H2A···S3i0.84 (4)2.87 (4)3.711 (3)176 (3)
N2—H3A···N1ii0.83 (3)2.45 (3)3.226 (3)156 (3)
N2—H4A···S3iii0.84 (3)2.90 (3)3.588 (2)141 (3)

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+2, −z+1; (iii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2516).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jia, C., Liu, S.-X., Tanner, C., Leiggener, C., Neels, A., Sanguinet, L., Levillain, E., Leutwyler, S., Hauser, A. & Decurtins, S. (2007). Chem. Eur. J.13, 3804–3812. [PubMed]
  • Krief, A. (1986). Tetrahedron, 42, 1209–1252.
  • Otsubo, T. & Takimiya, K. (2004). Bull. Chem. Soc. Jpn, 77, 43–58.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yamada, J. & Sugimoto, T. (2004). TTF Chemistry. Fundamentals and applications of Tetrathiafulvalene. Berlin: Springer.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography