PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3044.
Published online 2010 November 6. doi:  10.1107/S1600536810043187
PMCID: PMC3011662

1-Benzyl-2,5-dioxopyrrolidine-3,4-diyl diacetate

Abstract

The pyrrolidine-2,5-dione ring in the title compound, C15H15NO6, is in a twisted conformation with the acetyl C atoms projecting to opposite sides of the ring. The acetyl groups lie to opposite sides of the five-membered ring. The benzene ring is roughly perpendicular to the heterocyclic ring, forming a dihedral angle of 76.57 (14)° with it. In the crystal, mol­ecules are connected through a network of C—H(...)O and C—H(...)π inter­actions.

Related literature

For the use of N-acyl­iminium in organic synthesis, see: Vieira et al. (2008 [triangle]); Huang (2006 [triangle]); Russo et al. (2010 [triangle]). For background to the synthesis, see: Caracelli et al. (2010 [triangle]). For a related structure, see: Naz et al. (2009 [triangle]). For conformational analysis, see: Cremer & Pople (1975 [triangle]); Iulek & Zukerman-Schpector (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3044-scheme1.jpg

Experimental

Crystal data

  • C15H15NO6
  • M r = 305.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3044-efi1.jpg
  • a = 8.8498 (4) Å
  • b = 9.8107 (4) Å
  • c = 17.5148 (6) Å
  • V = 1520.68 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 290 K
  • 0.28 × 0.23 × 0.06 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.962, T max = 0.991
  • 7672 measured reflections
  • 1541 independent reflections
  • 1396 reflections with I > 2σ(I)
  • R int = 0.122

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.085
  • S = 1.07
  • 1541 reflections
  • 202 parameters
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043187/hg2732sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043187/hg2732Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank FAPESP (grant No. 07/59404–2 to HAS), CNPq (grant No. 300613/2007 to HAS) and CAPES (Rede Nanobiotec-Brasil grant No. 808/2009 to IC) for financial support.

supplementary crystallographic information

Comment

N-Acyliminium ions are very important in organic synthesis since they are reactive intermediates involved in the synthesis of many compounds with interesting biological properties (Vieira et al., 2008). Nucleophilic additions to N-acyliminium ions constitute an important method to provide α-functionalized amino compounds and for the preparation of alkaloids (Huang, 2006) and many other biologically active nitrogen heterocycles, such as ethosuximide used in the treatment of epilepsy (Russo et al., 2010). As part of our on-going research interest in bioactive compounds (Caracelli et al., 2010) the title compound, (I), was synthesized and its crystal structure determined as described herein.

The molecular structure of (I), Fig. 1, shows the pyrrolidine-2,5-dione ring [r.m.s. deviation of the N1,C1–C4 atoms = 0.105 Å] to adopt a twisted conformation with the C2 and C3 atoms being displaced by 0.089 (2) and -0.087 (2) Å, respectively, out of the plane. The ring-puckering parameters are q2 = 0.149 (2) Å, and [var phi]2 = 87.4 (8) ° (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997). The O1 and O6 atoms lie -0.178 (2) and 0.139 (2) Å out of the plane through the pyrrolidine ring, and the benzene ring is orientated to be normal to the ring as seen in the dihedral angle formed between their least-squares planes [76.57 (14) °]. The acetyl groups lie on opposite sides of the pyrrolidine plane. To a first approximation, the structure of (I) resembles that reported recently for the N-(m-tolyl) analogue (Naz et al., 2009).

In the crystal packing, molecules are connected via C—H···O and C—H···π interactions, Fig. 2 and Table 1.

Experimental

A mixture of L-tartaric acid (15.0 g, 100 mmol) and acetylchloride (70 ml, 1.0 mol) was stirred under reflux for 24 h under nitrogen atmosphere, during which the solution became homogeneous. Excess acetyl chloride was removed by distillation at 1 atm and trace amounts were removed under vacuum. The resulting crude anhydride was dissolved in dry THF (120 ml) and benzylamine (10.7 g,100 mmol) was slowly added. The solution was stirred for 4 h, and then concentrated in vacuum. The residue was then refluxed with acetyl chloride (70 ml, 1.0 mol) for another 5 h. After concentration of the reaction mixture under vacuum, the residue was purified by column chromatography (n-hexane/ethyl acetate, 2:1) to give the title compound (23.8 g, 78%) as a white solid. Single crystals of (I) were obtained by slow evaporation from its ethyl acetate-hexane solution.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). In the absence of significant anomalous scattering effects, 1119 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the chirality of the L-tartaric acid starting material.

Figures

Fig. 1.
Molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 35% probability level.
Fig. 2.
Unit-cell contents shown in projection down the a axis in (I). The C—H···O and C—H···π contacts are shown as orange and purple dashed lines, respectively.

Crystal data

C15H15NO6F(000) = 640
Mr = 305.28Dx = 1.333 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5560 reflections
a = 8.8498 (4) Åθ = 2.9–26.4°
b = 9.8107 (4) ŵ = 0.10 mm1
c = 17.5148 (6) ÅT = 290 K
V = 1520.68 (11) Å3Block, colourless
Z = 40.28 × 0.23 × 0.06 mm

Data collection

Bruker SMART APEXII diffractometer1541 independent reflections
Radiation source: fine-focus sealed tube1396 reflections with I > 2σ(I)
graphiteRint = 0.122
[var phi] and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.962, Tmax = 0.991k = −10→11
7672 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085w = 1/[σ2(Fo2) + (0.0293P)2 + 0.1923P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1541 reflectionsΔρmax = 0.12 e Å3
202 parametersΔρmin = −0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.111 (10)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.25814 (16)0.67116 (18)0.09591 (10)0.0555 (5)
O20.42326 (15)0.75768 (16)−0.03939 (9)0.0425 (4)
O30.57172 (17)0.60872 (18)0.02191 (10)0.0505 (4)
O40.5859 (2)1.03936 (19)0.03516 (11)0.0652 (6)
O50.3864 (3)1.1015 (2)0.10556 (14)0.0772 (6)
O60.6412 (2)0.93139 (18)0.18931 (10)0.0603 (5)
N10.44087 (19)0.79166 (19)0.15977 (11)0.0418 (5)
C10.3594 (2)0.7537 (2)0.09654 (13)0.0415 (5)
C20.4146 (2)0.8367 (2)0.02866 (13)0.0400 (5)
H20.34190.91040.01990.048*
C30.5611 (2)0.9008 (2)0.05719 (14)0.0448 (5)
H30.64530.84630.03740.054*
C40.5564 (2)0.8820 (2)0.14324 (14)0.0437 (5)
C50.4073 (3)0.7405 (3)0.23638 (14)0.0510 (6)
H5A0.49510.75380.26870.061*
H5B0.38750.64340.23360.061*
C60.2737 (3)0.8104 (2)0.27199 (13)0.0482 (6)
C70.1408 (3)0.7410 (3)0.28440 (16)0.0629 (7)
H70.13360.64950.27080.075*
C80.0181 (4)0.8059 (4)0.3169 (2)0.0835 (10)
H8−0.07090.75790.32540.100*
C90.0272 (5)0.9408 (4)0.3365 (2)0.0896 (12)
H9−0.05540.98450.35840.108*
C100.1573 (5)1.0103 (4)0.3238 (2)0.0956 (12)
H100.16361.10190.33700.115*
C110.2808 (4)0.9457 (3)0.2914 (2)0.0748 (9)
H110.36930.99440.28280.090*
C120.5071 (2)0.6412 (2)−0.03556 (14)0.0425 (5)
C130.5040 (3)0.5656 (3)−0.10878 (16)0.0586 (7)
H13A0.58640.5020−0.11020.088*
H13B0.51350.6287−0.15040.088*
H13C0.41020.5172−0.11320.088*
C140.4873 (5)1.1318 (3)0.06372 (18)0.0722 (9)
C150.5247 (7)1.2725 (3)0.0367 (3)0.1274 (19)
H15A0.44501.33380.05090.191*
H15B0.53551.2721−0.01780.191*
H15C0.61771.30180.05970.191*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0492 (8)0.0622 (11)0.0550 (11)−0.0163 (8)0.0025 (7)0.0034 (9)
O20.0459 (7)0.0426 (8)0.0388 (8)0.0016 (7)−0.0020 (6)−0.0024 (7)
O30.0532 (8)0.0470 (9)0.0514 (10)0.0047 (8)−0.0038 (8)0.0011 (8)
O40.0894 (13)0.0503 (10)0.0558 (11)−0.0256 (10)0.0064 (10)0.0006 (9)
O50.1066 (15)0.0511 (11)0.0739 (14)0.0153 (12)0.0061 (13)−0.0027 (11)
O60.0602 (10)0.0644 (11)0.0562 (11)−0.0106 (9)−0.0110 (8)−0.0119 (10)
N10.0427 (9)0.0433 (10)0.0395 (10)0.0004 (8)−0.0002 (7)−0.0005 (9)
C10.0390 (10)0.0409 (11)0.0445 (12)0.0007 (10)0.0029 (9)−0.0015 (11)
C20.0417 (10)0.0394 (11)0.0390 (11)0.0005 (9)0.0015 (9)−0.0021 (10)
C30.0473 (11)0.0414 (11)0.0457 (13)−0.0088 (10)0.0046 (10)−0.0064 (11)
C40.0438 (11)0.0408 (12)0.0465 (12)0.0000 (11)−0.0002 (10)−0.0050 (10)
C50.0585 (12)0.0517 (13)0.0428 (12)0.0063 (12)0.0029 (10)0.0077 (12)
C60.0628 (13)0.0482 (12)0.0337 (12)0.0064 (12)0.0026 (10)0.0025 (11)
C70.0716 (15)0.0587 (15)0.0584 (17)0.0038 (15)0.0144 (13)0.0088 (15)
C80.0765 (18)0.101 (3)0.073 (2)0.016 (2)0.0284 (16)0.018 (2)
C90.104 (3)0.100 (3)0.0645 (19)0.048 (2)0.0299 (18)0.007 (2)
C100.134 (3)0.071 (2)0.082 (2)0.024 (2)0.022 (2)−0.019 (2)
C110.0864 (19)0.0607 (16)0.077 (2)0.0022 (17)0.0113 (17)−0.0182 (17)
C120.0421 (10)0.0384 (12)0.0469 (13)−0.0025 (10)0.0043 (10)−0.0014 (10)
C130.0644 (14)0.0558 (15)0.0557 (15)−0.0018 (14)0.0033 (12)−0.0154 (14)
C140.123 (3)0.0413 (14)0.0525 (16)−0.0093 (17)−0.0130 (19)0.0001 (14)
C150.246 (6)0.0468 (18)0.090 (3)−0.032 (3)−0.023 (3)0.0162 (19)

Geometric parameters (Å, °)

O1—C11.208 (2)C6—C111.372 (4)
O2—C121.365 (3)C6—C71.376 (4)
O2—C21.424 (3)C7—C81.382 (4)
O3—C121.201 (3)C7—H70.9300
O4—C141.354 (4)C8—C91.370 (5)
O4—C31.430 (3)C8—H80.9300
O5—C141.193 (4)C9—C101.356 (6)
O6—C41.204 (3)C9—H90.9300
N1—C11.373 (3)C10—C111.385 (5)
N1—C41.384 (3)C10—H100.9300
N1—C51.463 (3)C11—H110.9300
C1—C21.522 (3)C12—C131.481 (3)
C2—C31.525 (3)C13—H13A0.9600
C2—H20.9800C13—H13B0.9600
C3—C41.519 (3)C13—H13C0.9600
C3—H30.9800C14—C151.496 (4)
C5—C61.502 (3)C15—H15A0.9600
C5—H5A0.9700C15—H15B0.9600
C5—H5B0.9700C15—H15C0.9600
C12—O2—C2116.37 (16)C6—C7—H7119.7
C14—O4—C3116.0 (2)C8—C7—H7119.7
C1—N1—C4113.15 (19)C9—C8—C7120.2 (4)
C1—N1—C5122.70 (18)C9—C8—H8119.9
C4—N1—C5124.15 (19)C7—C8—H8119.9
O1—C1—N1125.4 (2)C10—C9—C8119.6 (3)
O1—C1—C2126.2 (2)C10—C9—H9120.2
N1—C1—C2108.44 (17)C8—C9—H9120.2
O2—C2—C1112.34 (17)C9—C10—C11120.5 (3)
O2—C2—C3116.94 (17)C9—C10—H10119.8
C1—C2—C3103.76 (18)C11—C10—H10119.8
O2—C2—H2107.8C6—C11—C10120.5 (3)
C1—C2—H2107.8C6—C11—H11119.7
C3—C2—H2107.8C10—C11—H11119.7
O4—C3—C4112.8 (2)O3—C12—O2121.5 (2)
O4—C3—C2115.7 (2)O3—C12—C13127.0 (2)
C4—C3—C2104.60 (18)O2—C12—C13111.5 (2)
O4—C3—H3107.8C12—C13—H13A109.5
C4—C3—H3107.8C12—C13—H13B109.5
C2—C3—H3107.8H13A—C13—H13B109.5
O6—C4—N1125.3 (2)C12—C13—H13C109.5
O6—C4—C3126.8 (2)H13A—C13—H13C109.5
N1—C4—C3107.78 (18)H13B—C13—H13C109.5
N1—C5—C6112.58 (19)O5—C14—O4122.9 (3)
N1—C5—H5A109.1O5—C14—C15126.1 (4)
C6—C5—H5A109.1O4—C14—C15111.0 (4)
N1—C5—H5B109.1C14—C15—H15A109.5
C6—C5—H5B109.1C14—C15—H15B109.5
H5A—C5—H5B107.8H15A—C15—H15B109.5
C11—C6—C7118.6 (3)C14—C15—H15C109.5
C11—C6—C5120.5 (3)H15A—C15—H15C109.5
C7—C6—C5120.8 (2)H15B—C15—H15C109.5
C6—C7—C8120.6 (3)
C4—N1—C1—O1176.2 (2)O4—C3—C4—O6−44.1 (3)
C5—N1—C1—O1−3.7 (3)C2—C3—C4—O6−170.7 (2)
C4—N1—C1—C2−5.8 (2)O4—C3—C4—N1138.79 (19)
C5—N1—C1—C2174.33 (19)C2—C3—C4—N112.2 (2)
C12—O2—C2—C1−54.5 (2)C1—N1—C5—C6−77.9 (3)
C12—O2—C2—C365.3 (2)C4—N1—C5—C6102.2 (2)
O1—C1—C2—O2−41.8 (3)N1—C5—C6—C11−67.2 (3)
N1—C1—C2—O2140.22 (17)N1—C5—C6—C7111.6 (3)
O1—C1—C2—C3−169.0 (2)C11—C6—C7—C8−1.0 (5)
N1—C1—C2—C313.0 (2)C5—C6—C7—C8−179.7 (3)
C14—O4—C3—C4−55.3 (3)C6—C7—C8—C90.6 (5)
C14—O4—C3—C265.1 (3)C7—C8—C9—C100.0 (6)
O2—C2—C3—O496.2 (2)C8—C9—C10—C11−0.2 (6)
C1—C2—C3—O4−139.5 (2)C7—C6—C11—C100.9 (5)
O2—C2—C3—C4−139.1 (2)C5—C6—C11—C10179.6 (3)
C1—C2—C3—C4−14.8 (2)C9—C10—C11—C6−0.3 (6)
C1—N1—C4—O6178.6 (2)C2—O2—C12—O3−1.1 (3)
C5—N1—C4—O6−1.5 (3)C2—O2—C12—C13178.27 (18)
C1—N1—C4—C3−4.2 (2)C3—O4—C14—O50.9 (4)
C5—N1—C4—C3175.7 (2)C3—O4—C14—C15−179.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.982.513.206 (2)128
C3—H3···O1ii0.982.553.276 (3)131
C5—H5b···O6iii0.972.493.328 (3)144
C13—H13b···Cg1ii0.962.953.702 (3)136

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x+1/2, −y+3/2, −z; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2732).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caracelli, I., Zukerman-Schpector, J., Maganhi, S. H., Stefani, H. A., Guadagnin, R. & Tiekink, E. R. T. (2010). J. Braz. Chem. Soc.21, 2164–2170.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Huang, P.-Q. (2006). Synlett, pp. 1133–1149.
  • Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.
  • Naz, S., Zaidi, J., Mehmood, T. & Jones, P. G. (2009). Acta Cryst. E65, o1487. [PMC free article] [PubMed]
  • Russo, E., Citraro, R., Scicchitano, F., De Fazio, S., Di Paola, E. D., Constanti, A. & De Sarro, G. (2010). Epilepsia, 51, 1560–1569. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vieira, A. S., Ferreira, F. P., Fiorante, P. F., Guadagnin, R. C. & Stefani, H. A. (2008). Tetrahedron, 64, 3306–3314.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography