PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): m1563.
Published online 2010 November 13. doi:  10.1107/S1600536810045824
PMCID: PMC3011661

Bis(μ-2,2′-disulfanediyldibenzoato)bis­[aqua­(2,2′-bipyridine)­nickel(II)]

Abstract

In the centrosymmetric title complex, [Ni2(C14H8O4S2)2(C10H8N2)2(H2O)2], the NiII atom is coordinated by two N atoms from one 2,2′-bipyridine ligand, three carboxyl­ate O atoms (one bidentate and one monodentate) from two different disulfanediyldibenzoate ligands and one O atom from a coordinated water mol­ecule in an octa­hedral coordination geometry. The disulfanediyldibenzo­ate dianion bridges two NiII atoms. Adjacent mol­ecules are linked through the coordinated water mol­ecules, forming a O—H(...)O hydrogen-bonded chain running along the a axis.

Related literature

For complexes of 2,2′-disulfanediyldibenzoic acid, see: Feng et al. (2009 [triangle]); Humphrey et al. (2004 [triangle]); Li et al. (2007 [triangle]); Murugavel et al. (2001 [triangle]); Zhou et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1563-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C14H8O4S2)2(C10H8N2)2(H2O)2]
  • M r = 1074.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1563-efi1.jpg
  • a = 13.498 (4) Å
  • b = 16.769 (5) Å
  • c = 10.238 (3) Å
  • β = 93.196 (4)°
  • V = 2313.7 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.06 mm−1
  • T = 296 K
  • 0.35 × 0.33 × 0.28 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.708, T max = 0.756
  • 19861 measured reflections
  • 5302 independent reflections
  • 4428 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.080
  • S = 1.06
  • 5302 reflections
  • 307 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2002) [triangle]; cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045824/ng5064sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045824/ng5064Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province.

supplementary crystallographic information

Comment

The flexible 2,2'-disulfanediyldibenzoic acid, a multifunctional ligand containing both carboxylic and thio groups, can potentially afford various coordination modes and diverse coordination architectures. Many complexes with this ligand show unique structural topologies and interesting properties (Murugavel et al., 2001; Humphrey et al., 2004; Li et al., 2007; Zhou et al., 2009; Feng et al., 2009). In this work, we have used this ligand to react with a NiII salt in the presence of 2,2'-bipyridine as a chelating co-ligand, to obtain the title binuclear compound, Ni2(H2O)2(C10H8N2)2(C14H8O4S2)2.

The asymmetric unit of the title compound is composed of one NiII ion, one 2,2'-disulfanediyldibenzoate ligand, one 2,2'-bipyridine ligand and one coordinated water molecule (Fig. 1). The NiII center is six-coordinated, in a distorted octahedral geometry, by two N atoms from one 2,2'-bipyridine ligand, three carboxylate O atoms from two different disulfanediyldibenzoate ligands and one O atom from a coordinated water molecule Two disulfanediyldibenzoate dianions bridge two NiII ions about a center of inversion with its two carboxylate groups in bidentate chelating and monodentate modes, respectively, generating the title binuclear compound. The Ni···Ni distance bridged by two 2, 2'-disulfanediyldibenzoate is 10.061 (3) Å. Adjacent molecules are linked through both O5—H5A···O2 and O5—H5B···O4(x + 1, y, z) hydrogen bonds and lead to the formation of a one-dimensional hydrogen-bonded chain running along the a axis (Fig. 2).

Experimental

A mixture of Ni(NO3)2.6H2O (21.0 mg, 0.1 mmol) with 2,2'-disulfanediyldibenzoic acid (30.6 mg, 0.1 mmol), 2,2'-bipyridine (15.6 mg, 0.1 mmol) and water (10 ml) was sealed in a 25 ml Teflon-lined stainless steel vessel, and heated at 383 K for 3 d. A number of green block crystals of (I) were obtained after cooling the solution to room temperature. The yield of (I) was ca 65%, based on 2, 2'-disulfanediyldibenzoic acid.

Refinement

The water H atoms were located in a difference Fourier map with a distance restraint of O—H = 0.85 Å and Uiso(H) =1.5Ueq(O). The refinement of water H atoms were performed using 3 least-squares restraints by applying DFIX instructions of SHELXTL. All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93 Å and Uiso(H) set to 1.2eq(C) of the parent atom.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 35% probability level. Hydrogen atoms and are omitted for clarity.
Fig. 2.
View of the one-dimensional hydrogen-bonded chain of the title compound running along the a axis.

Crystal data

[Ni2(C14H8O4S2)2(C10H8N2)2(H2O)2]F(000) = 1104
Mr = 1074.47Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7893 reflections
a = 13.498 (4) Åθ = 2.3–27.5°
b = 16.769 (5) ŵ = 1.06 mm1
c = 10.238 (3) ÅT = 296 K
β = 93.196 (4)°Block, green
V = 2313.7 (12) Å30.35 × 0.33 × 0.28 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer5302 independent reflections
Radiation source: fine-focus sealed tube4428 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −17→17
Tmin = 0.708, Tmax = 0.756k = −21→20
19861 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0369P)2 + 0.5543P] where P = (Fo2 + 2Fc2)/3
5302 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.34 e Å3
3 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.847531 (15)0.055670 (13)0.87112 (2)0.035
C10.71145 (13)−0.16433 (10)0.72485 (16)0.0372 (4)
C20.61332 (13)−0.15067 (10)0.75883 (16)0.0361 (4)
C30.54059 (16)−0.20699 (12)0.7226 (2)0.0516 (5)
H30.4753−0.19860.74400.062*
C40.56481 (19)−0.27532 (13)0.6549 (2)0.0630 (6)
H40.5157−0.31240.63170.076*
C50.66066 (19)−0.28886 (13)0.6217 (2)0.0635 (6)
H50.6763−0.33470.57600.076*
C60.73315 (17)−0.23407 (12)0.65659 (19)0.0514 (5)
H60.7980−0.24350.63440.062*
C70.79432 (13)−0.10570 (11)0.75377 (16)0.0375 (4)
C80.26979 (12)0.00106 (10)0.79602 (16)0.0364 (4)
C90.37029 (12)−0.01665 (10)0.77860 (15)0.0352 (3)
C100.41443 (15)0.01522 (13)0.67009 (18)0.0493 (5)
H100.48080.00440.65760.059*
C110.36100 (17)0.06275 (15)0.5808 (2)0.0609 (6)
H110.39190.08360.50940.073*
C120.26263 (17)0.07935 (15)0.5966 (2)0.0631 (6)
H120.22680.11080.53590.076*
C130.21750 (15)0.04884 (13)0.70385 (19)0.0509 (5)
H130.15110.06030.71490.061*
C140.21825 (12)−0.02608 (10)0.91345 (16)0.0345 (3)
O10.76966 (9)−0.04232 (7)0.81054 (13)0.0430 (3)
O20.87892 (10)−0.12087 (10)0.71985 (16)0.0652 (4)
O30.26151 (9)−0.07316 (7)0.99322 (11)0.0361 (3)
O40.13146 (8)−0.00058 (8)0.93571 (12)0.0437 (3)
S10.58588 (3)−0.06272 (3)0.85144 (4)0.03707 (9)
S20.44006 (3)−0.07593 (3)0.89692 (4)0.03871 (10)
C150.71731 (16)0.10390 (13)0.6351 (2)0.0548 (5)
H150.70390.04970.62550.066*
C160.66890 (17)0.15698 (15)0.5504 (2)0.0650 (6)
H160.62460.13890.48410.078*
C170.68751 (18)0.23695 (15)0.5661 (2)0.0652 (6)
H170.65600.27390.51030.078*
C180.75337 (18)0.26211 (13)0.6655 (2)0.0577 (5)
H180.76560.31620.67820.069*
C190.80122 (14)0.20630 (11)0.74626 (18)0.0430 (4)
C200.87518 (14)0.22631 (11)0.85377 (18)0.0441 (4)
C210.90507 (19)0.30399 (14)0.8850 (2)0.0629 (6)
H210.87830.34710.83800.075*
C220.9751 (2)0.31585 (16)0.9869 (3)0.0739 (7)
H220.99510.36731.00990.089*
C231.01454 (18)0.25211 (16)1.0536 (2)0.0671 (6)
H231.06210.25931.12190.081*
C240.98269 (15)0.17672 (14)1.0180 (2)0.0564 (5)
H241.01010.13321.06310.068*
N10.78256 (11)0.12735 (9)0.73016 (14)0.0413 (3)
N20.91367 (11)0.16354 (9)0.92081 (15)0.0432 (3)
O50.96680 (9)0.01730 (9)0.77302 (14)0.0491 (3)
H5A1.0177 (12)0.0183 (13)0.824 (2)0.074*
H5B0.9511 (17)−0.0306 (7)0.754 (2)0.074*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0260.0390.040−0.0010.0030.007
C10.0405 (9)0.0373 (9)0.0332 (8)0.0051 (7)−0.0024 (7)0.0006 (7)
C20.0394 (9)0.0346 (9)0.0338 (8)0.0004 (7)−0.0025 (7)0.0028 (6)
C30.0476 (11)0.0493 (11)0.0572 (11)−0.0082 (9)−0.0033 (9)−0.0062 (9)
C40.0699 (15)0.0470 (12)0.0703 (14)−0.0087 (11)−0.0129 (12)−0.0120 (10)
C50.0832 (17)0.0434 (12)0.0624 (13)0.0081 (11)−0.0098 (12)−0.0160 (10)
C60.0570 (12)0.0489 (11)0.0476 (10)0.0123 (10)−0.0028 (9)−0.0067 (9)
C70.0341 (9)0.0441 (10)0.0340 (8)0.0070 (7)0.0008 (7)0.0009 (7)
C80.0318 (8)0.0419 (9)0.0356 (8)−0.0026 (7)0.0020 (7)−0.0001 (7)
C90.0343 (8)0.0380 (9)0.0333 (8)−0.0011 (7)0.0009 (6)−0.0010 (7)
C100.0398 (10)0.0672 (13)0.0416 (9)0.0035 (9)0.0100 (8)0.0056 (9)
C110.0549 (13)0.0874 (17)0.0411 (10)0.0048 (11)0.0106 (9)0.0210 (10)
C120.0552 (13)0.0885 (17)0.0455 (11)0.0112 (12)0.0017 (10)0.0251 (11)
C130.0362 (10)0.0692 (14)0.0474 (10)0.0067 (9)0.0025 (8)0.0131 (9)
C140.0282 (8)0.0361 (8)0.0392 (8)−0.0051 (7)0.0015 (7)−0.0012 (7)
O10.0318 (6)0.0405 (7)0.0576 (7)−0.0019 (5)0.0097 (6)−0.0059 (6)
O20.0349 (7)0.0753 (11)0.0862 (11)0.0066 (7)0.0110 (7)−0.0292 (9)
O30.0303 (6)0.0369 (6)0.0414 (6)−0.0006 (5)0.0051 (5)0.0039 (5)
O40.0268 (6)0.0562 (8)0.0483 (7)0.0033 (5)0.0052 (5)0.0090 (6)
S10.0287 (2)0.0389 (2)0.0437 (2)−0.00063 (17)0.00326 (17)−0.00318 (18)
S20.0290 (2)0.0452 (2)0.0422 (2)−0.00065 (18)0.00338 (17)0.00589 (18)
C150.0550 (12)0.0520 (12)0.0560 (12)0.0005 (10)−0.0092 (9)0.0086 (9)
C160.0598 (14)0.0721 (16)0.0610 (13)0.0092 (12)−0.0150 (11)0.0087 (11)
C170.0726 (16)0.0638 (15)0.0585 (13)0.0257 (12)−0.0014 (11)0.0158 (11)
C180.0692 (14)0.0450 (11)0.0594 (12)0.0142 (10)0.0079 (10)0.0108 (9)
C190.0429 (10)0.0420 (10)0.0453 (9)0.0038 (8)0.0128 (8)0.0075 (8)
C200.0432 (10)0.0435 (10)0.0470 (10)−0.0060 (8)0.0150 (8)0.0060 (8)
C210.0758 (16)0.0470 (12)0.0670 (14)−0.0151 (11)0.0128 (12)0.0067 (10)
C220.0807 (18)0.0650 (16)0.0771 (16)−0.0348 (14)0.0130 (14)−0.0062 (13)
C230.0585 (14)0.0775 (17)0.0652 (14)−0.0287 (13)0.0014 (11)−0.0046 (12)
C240.0410 (11)0.0672 (14)0.0604 (12)−0.0145 (10)−0.0024 (9)0.0069 (10)
N10.0360 (8)0.0433 (8)0.0444 (8)0.0004 (7)0.0023 (6)0.0083 (7)
N20.0338 (8)0.0477 (9)0.0487 (8)−0.0080 (7)0.0068 (6)0.0061 (7)
O50.0286 (7)0.0674 (9)0.0516 (8)0.0012 (6)0.0054 (5)0.0055 (7)

Geometric parameters (Å, °)

Ni1—O12.0290 (13)C12—H120.9300
Ni1—N12.0385 (15)C13—H130.9300
Ni1—O52.0481 (14)C14—O31.256 (2)
Ni1—N22.0682 (16)C14—O41.279 (2)
Ni1—O3i2.0999 (13)C14—Ni1i2.4734 (18)
Ni1—O4i2.1869 (13)O3—Ni1i2.0999 (13)
Ni1—C14i2.4733 (18)O4—Ni1i2.1870 (13)
C1—C61.402 (3)S1—S22.0596 (8)
C1—C21.407 (2)C15—N11.335 (2)
C1—C71.506 (2)C15—C161.381 (3)
C2—C31.398 (2)C15—H150.9300
C2—S11.8029 (18)C16—C171.372 (3)
C3—C41.387 (3)C16—H160.9300
C3—H30.9300C17—C181.379 (3)
C4—C51.375 (3)C17—H170.9300
C4—H40.9300C18—C191.385 (3)
C5—C61.375 (3)C18—H180.9300
C5—H50.9300C19—N11.356 (2)
C6—H60.9300C19—C201.483 (3)
C7—O21.238 (2)C20—N21.345 (2)
C7—O11.265 (2)C20—C211.395 (3)
C8—C131.399 (2)C21—C221.383 (3)
C8—C91.410 (2)C21—H210.9300
C8—C141.493 (2)C22—C231.361 (4)
C9—C101.396 (2)C22—H220.9300
C9—S21.7932 (17)C23—C241.378 (3)
C10—C111.385 (3)C23—H230.9300
C10—H100.9300C24—N21.343 (2)
C11—C121.375 (3)C24—H240.9300
C11—H110.9300O5—H5A0.841 (9)
C12—C131.383 (3)O5—H5B0.850 (9)
O1—Ni1—N193.79 (6)C11—C12—H12120.3
O1—Ni1—O590.21 (6)C13—C12—H12120.3
N1—Ni1—O599.03 (6)C12—C13—C8121.29 (19)
O1—Ni1—N2173.06 (6)C12—C13—H13119.4
N1—Ni1—N279.70 (6)C8—C13—H13119.4
O5—Ni1—N293.16 (6)O3—C14—O4119.43 (15)
O1—Ni1—O3i86.85 (5)O3—C14—C8119.62 (15)
N1—Ni1—O3i95.52 (6)O4—C14—C8120.92 (15)
O5—Ni1—O3i165.32 (5)O3—C14—Ni1i58.08 (9)
N2—Ni1—O3i91.37 (5)O4—C14—Ni1i62.00 (9)
O1—Ni1—O4i88.47 (5)C8—C14—Ni1i170.27 (12)
N1—Ni1—O4i156.68 (6)C7—O1—Ni1132.52 (12)
O5—Ni1—O4i104.18 (5)C14—O3—Ni1i91.41 (10)
N2—Ni1—O4i96.58 (6)C14—O4—Ni1i86.90 (10)
O3i—Ni1—O4i61.39 (5)C2—S1—S2104.94 (6)
O1—Ni1—C14i84.52 (5)C9—S2—S1105.08 (6)
N1—Ni1—C14i126.01 (6)N1—C15—C16122.5 (2)
O5—Ni1—C14i134.86 (6)N1—C15—H15118.7
N2—Ni1—C14i97.33 (6)C16—C15—H15118.7
O3i—Ni1—C14i30.51 (5)C17—C16—C15118.6 (2)
O4i—Ni1—C14i31.10 (5)C17—C16—H16120.7
C6—C1—C2119.01 (17)C15—C16—H16120.7
C6—C1—C7117.97 (17)C16—C17—C18119.46 (19)
C2—C1—C7122.97 (15)C16—C17—H17120.3
C3—C2—C1118.77 (17)C18—C17—H17120.3
C3—C2—S1122.05 (15)C17—C18—C19119.6 (2)
C1—C2—S1119.15 (13)C17—C18—H18120.2
C4—C3—C2120.6 (2)C19—C18—H18120.2
C4—C3—H3119.7N1—C19—C18120.67 (19)
C2—C3—H3119.7N1—C19—C20115.09 (16)
C5—C4—C3120.7 (2)C18—C19—C20124.23 (19)
C5—C4—H4119.6N2—C20—C21121.00 (19)
C3—C4—H4119.6N2—C20—C19115.26 (16)
C4—C5—C6119.4 (2)C21—C20—C19123.75 (19)
C4—C5—H5120.3C22—C21—C20118.9 (2)
C6—C5—H5120.3C22—C21—H21120.5
C5—C6—C1121.4 (2)C20—C21—H21120.5
C5—C6—H6119.3C23—C22—C21119.8 (2)
C1—C6—H6119.3C23—C22—H22120.1
O2—C7—O1124.88 (17)C21—C22—H22120.1
O2—C7—C1119.81 (17)C22—C23—C24118.7 (2)
O1—C7—C1115.29 (15)C22—C23—H23120.7
C13—C8—C9119.23 (16)C24—C23—H23120.7
C13—C8—C14118.52 (16)N2—C24—C23122.7 (2)
C9—C8—C14122.18 (15)N2—C24—H24118.6
C10—C9—C8118.46 (16)C23—C24—H24118.6
C10—C9—S2121.23 (14)C15—N1—C19119.12 (16)
C8—C9—S2120.27 (13)C15—N1—Ni1125.65 (14)
C11—C10—C9121.06 (18)C19—N1—Ni1114.83 (12)
C11—C10—H10119.5C24—N2—C20118.79 (18)
C9—C10—H10119.5C24—N2—Ni1126.75 (14)
C12—C11—C10120.63 (19)C20—N2—Ni1114.19 (12)
C12—C11—H11119.7Ni1—O5—H5A108.9 (17)
C10—C11—H11119.7Ni1—O5—H5B102.6 (18)
C11—C12—C13119.32 (19)H5A—O5—H5B110.3 (14)

Symmetry codes: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5B···O20.85 (1)1.82 (1)2.646 (2)162 (2)
O5—H5A···O4ii0.84 (1)1.89 (1)2.7187 (18)169 (2)

Symmetry codes: (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5064).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). Chem. Commun. pp. 5296–5298. [PubMed]
  • Humphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670–1678. [PubMed]
  • Li, X.-H., Jia, S.-C. & Jalbout, A. F. (2007). Z. Kristallogr. New Cryst. Struct.222, 117–118.
  • Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem.40, 6870–6878. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Zhou, L.-M., Zhang, Q. & Hu, M. (2009). Acta Cryst. E65, m1221–m1222. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography