PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3109.
Published online 2010 November 10. doi:  10.1107/S1600536810045125
PMCID: PMC3011660

3,3,6-Tribromo-1-methyl-1H-2,1-benzo­thia­zin-4(3H)-one 2,2-dioxide

Abstract

In the title compound, C9H6Br3NO3S, a halogenated benzothia­zine derivative, the thia­zine ring adopts a sofa conformation. The crystal studied was a racemic twin with a contribution of 72 (1)% of the major domain.

Related literature

For the synthesis and related structures, see: Shafiq et al. (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3109-scheme1.jpg

Experimental

Crystal data

  • C9H6Br3NO3S
  • M r = 447.94
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3109-efi1.jpg
  • a = 14.922 (1) Å
  • b = 12.1310 (8) Å
  • c = 7.0811 (4) Å
  • V = 1281.81 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 9.60 mm−1
  • T = 296 K
  • 0.28 × 0.21 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.096, T max = 0.144
  • 7900 measured reflections
  • 2941 independent reflections
  • 2221 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.071
  • S = 0.99
  • 2941 reflections
  • 156 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.55 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1242 Friedel pairs
  • Flack parameter: 0.00 (3)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810045125/bt5404sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810045125/bt5404Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

supplementary crystallographic information

Comment

The title compound, (I), is structurally related to the already reported crystal structures of 3,3-dichloro-1-ethyl-1H-2,1-benzothiazin-4 (3H)-one 2,2-dioxide, (II), (Shafiq et al., 2009a) and 6-bromo-3,3-dichloro-1-methyl-1H-2,1-benzothiazin-4 (3H)-one 2,2-dioxide, (III), (Shafiq et al., 2009b).

Like (II) and (III) the thiazine (C1/C6/C7/C8/S1/N1) ring in the crystal structure adopted a sofa form.

Experimental

The title compound was prepared following the already reported procedure (Shafiq et al., 2009b).

Refinement

All H-atoms were positioned with idealized geometry with C—H = 0.93 Å and C—H = 0.96 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl). The crystal turned out to be a racemic twin with a contribution of 72 (1)% of the major domain.

Figures

Fig. 1.
Perspective view of the title compound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C9H6Br3NO3SF(000) = 848
Mr = 447.94Dx = 2.321 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2326 reflections
a = 14.922 (1) Åθ = 3.3–24.8°
b = 12.1310 (8) ŵ = 9.60 mm1
c = 7.0811 (4) ÅT = 296 K
V = 1281.81 (14) Å3Needle, light brown
Z = 40.28 × 0.21 × 0.12 mm

Data collection

Bruker Kappa APEXII CCD diffractometer2941 independent reflections
Radiation source: fine-focus sealed tube2221 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 28.2°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −15→19
Tmin = 0.096, Tmax = 0.144k = −16→10
7900 measured reflectionsl = −8→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.071w = 1/[σ2(Fo2) + (0.0309P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2941 reflectionsΔρmax = 0.54 e Å3
156 parametersΔρmin = −0.55 e Å3
1 restraintAbsolute structure: Flack (1983), 1242 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.56408 (4)0.70021 (5)0.24956 (8)0.05225 (17)
S10.21026 (9)0.32623 (11)0.3603 (2)0.0368 (3)
O10.2102 (3)0.6272 (3)0.2328 (8)0.0631 (13)
N10.3103 (2)0.3077 (3)0.2744 (6)0.0341 (9)
C10.3690 (3)0.3998 (3)0.2654 (7)0.0269 (10)
Br20.17819 (4)0.39549 (5)−0.05254 (9)0.05073 (17)
O20.2124 (3)0.3737 (3)0.5431 (5)0.0505 (11)
C20.4609 (3)0.3843 (3)0.2690 (8)0.0352 (11)
H20.48410.31320.27540.042*
Br30.05403 (4)0.47720 (5)0.28558 (9)0.05946 (19)
O30.1596 (3)0.2288 (3)0.3279 (6)0.0569 (11)
C30.5178 (3)0.4721 (4)0.2632 (8)0.0385 (11)
H30.57940.46050.26570.046*
C40.4844 (3)0.5789 (4)0.2536 (7)0.0346 (11)
C50.3947 (3)0.5960 (3)0.2469 (7)0.0333 (11)
H50.37270.66760.24000.040*
C60.3348 (3)0.5074 (3)0.2503 (7)0.0279 (10)
C70.2389 (3)0.5345 (4)0.2336 (6)0.0309 (10)
C80.1729 (3)0.4378 (4)0.2090 (6)0.0325 (11)
C90.3419 (4)0.1959 (4)0.2311 (10)0.0553 (16)
H9C0.38400.19890.12870.083*
H9B0.29190.15060.19580.083*
H9A0.37050.16520.34050.083*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0503 (4)0.0549 (3)0.0516 (3)−0.0277 (3)0.0009 (3)−0.0028 (3)
S10.0342 (8)0.0388 (7)0.0376 (6)−0.0059 (6)0.0022 (6)0.0082 (6)
O10.039 (2)0.0306 (19)0.120 (4)0.0096 (17)−0.002 (3)−0.006 (3)
N10.029 (2)0.0234 (19)0.050 (3)−0.0030 (16)0.001 (2)0.002 (2)
C10.031 (3)0.022 (2)0.027 (2)0.0008 (18)0.004 (2)0.004 (2)
Br20.0663 (4)0.0518 (3)0.0341 (2)0.0025 (3)−0.0111 (3)−0.0066 (3)
O20.053 (3)0.069 (3)0.029 (2)−0.009 (2)0.0066 (18)0.0041 (18)
C20.029 (3)0.029 (2)0.048 (3)0.0052 (19)0.005 (3)0.007 (3)
Br30.0275 (3)0.0677 (4)0.0831 (5)0.0025 (3)0.0073 (3)−0.0042 (4)
O30.047 (2)0.043 (2)0.081 (3)−0.0203 (19)0.005 (2)0.009 (2)
C30.025 (3)0.049 (3)0.041 (3)0.000 (2)0.002 (3)0.002 (3)
C40.031 (3)0.039 (3)0.033 (2)−0.012 (2)0.000 (2)0.000 (3)
C50.041 (3)0.022 (2)0.037 (3)−0.0056 (19)0.001 (2)−0.002 (2)
C60.029 (3)0.028 (2)0.027 (2)−0.0008 (18)0.000 (2)−0.001 (2)
C70.030 (3)0.028 (2)0.034 (2)−0.001 (2)0.000 (2)−0.001 (2)
C80.025 (3)0.039 (3)0.033 (3)0.000 (2)0.001 (2)−0.007 (2)
C90.063 (4)0.027 (3)0.076 (4)−0.002 (3)0.014 (4)−0.006 (3)

Geometric parameters (Å, °)

Br1—C41.892 (4)C2—H20.9300
S1—O21.417 (4)Br3—C81.916 (5)
S1—O31.422 (4)C3—C41.390 (6)
S1—N11.627 (4)C3—H30.9300
S1—C81.814 (5)C4—C51.356 (7)
O1—C71.204 (5)C5—C61.398 (6)
N1—C11.421 (5)C5—H50.9300
N1—C91.469 (6)C6—C71.473 (6)
C1—C21.384 (6)C7—C81.542 (6)
C1—C61.406 (5)C9—H9C0.9600
Br2—C81.923 (4)C9—H9B0.9600
C2—C31.362 (6)C9—H9A0.9600
O2—S1—O3119.9 (2)C4—C5—C6120.9 (4)
O2—S1—N1112.1 (2)C4—C5—H5119.6
O3—S1—N1108.2 (2)C6—C5—H5119.6
O2—S1—C8104.1 (2)C5—C6—C1118.9 (4)
O3—S1—C8111.2 (2)C5—C6—C7116.6 (4)
N1—S1—C899.4 (2)C1—C6—C7124.5 (4)
C1—N1—C9121.2 (4)O1—C7—C6123.7 (4)
C1—N1—S1118.3 (3)O1—C7—C8118.9 (4)
C9—N1—S1120.0 (3)C6—C7—C8117.4 (4)
C2—C1—C6119.2 (4)C7—C8—S1107.7 (3)
C2—C1—N1120.3 (4)C7—C8—Br3111.7 (3)
C6—C1—N1120.6 (4)S1—C8—Br3107.7 (2)
C3—C2—C1120.7 (4)C7—C8—Br2106.6 (3)
C3—C2—H2119.6S1—C8—Br2110.9 (2)
C1—C2—H2119.6Br3—C8—Br2112.2 (2)
C2—C3—C4120.5 (4)N1—C9—H9C109.5
C2—C3—H3119.8N1—C9—H9B109.5
C4—C3—H3119.8H9C—C9—H9B109.5
C5—C4—C3119.9 (4)N1—C9—H9A109.5
C5—C4—Br1120.1 (4)H9C—C9—H9A109.5
C3—C4—Br1120.0 (4)H9B—C9—H9A109.5
O2—S1—N1—C1−54.7 (4)C2—C1—C6—C7176.2 (5)
O3—S1—N1—C1170.9 (4)N1—C1—C6—C7−3.0 (7)
C8—S1—N1—C154.8 (4)C5—C6—C7—O1−6.2 (8)
O2—S1—N1—C9117.5 (5)C1—C6—C7—O1175.1 (5)
O3—S1—N1—C9−16.9 (5)C5—C6—C7—C8171.7 (4)
C8—S1—N1—C9−133.0 (5)C1—C6—C7—C8−7.1 (7)
C9—N1—C1—C2−18.4 (7)O1—C7—C8—S1−142.5 (5)
S1—N1—C1—C2153.6 (4)C6—C7—C8—S139.5 (5)
C9—N1—C1—C6160.7 (5)O1—C7—C8—Br3−24.5 (6)
S1—N1—C1—C6−27.2 (6)C6—C7—C8—Br3157.6 (3)
C6—C1—C2—C31.8 (8)O1—C7—C8—Br298.3 (5)
N1—C1—C2—C3−179.1 (5)C6—C7—C8—Br2−79.6 (4)
C1—C2—C3—C40.0 (8)O2—S1—C8—C757.1 (4)
C2—C3—C4—C5−1.1 (8)O3—S1—C8—C7−172.5 (3)
C2—C3—C4—Br1179.0 (4)N1—S1—C8—C7−58.7 (3)
C3—C4—C5—C60.3 (8)O2—S1—C8—Br3−63.5 (3)
Br1—C4—C5—C6−179.8 (4)O3—S1—C8—Br366.9 (3)
C4—C5—C6—C11.6 (7)N1—S1—C8—Br3−179.3 (2)
C4—C5—C6—C7−177.3 (4)O2—S1—C8—Br2173.4 (3)
C2—C1—C6—C5−2.6 (7)O3—S1—C8—Br2−56.2 (3)
N1—C1—C6—C5178.3 (4)N1—S1—C8—Br257.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5404).

References

  • Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009a). Acta Cryst. E65, o430. [PMC free article] [PubMed]
  • Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Haider, Z. (2009b). Acta Cryst. E65, o1413. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography