PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 December 1; 66(Pt 12): o3077.
Published online 2010 November 6. doi:  10.1107/S1600536810044351
PMCID: PMC3011657

N-Benzyl­pyridin-2-amine

Abstract

In the title compound, C12H12N2, the dihedral angle between the benzene and pyridine rings is 67.63 (8)°. Mol­ecules are linked into centrosymmetric dimers by a simple inter­molecular N—H(...)N hydrogen bond with graph-set motif R 2 2(8).

Related literature

For the application of Schiff base compounds in coordination chemistry, see: Garnovskii et al. (1993 [triangle]); Gong & Xu (2008 [triangle]). For the synthesis, see: Xu et al. (2009 [triangle]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995 [triangle]). For another report on the structure of N-benzyl­pyridin-2-amine, see: Wang et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o3077-scheme1.jpg

Experimental

Crystal data

  • C12H12N2
  • M r = 184.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3077-efi1.jpg
  • a = 5.9233 (10) Å
  • b = 8.0984 (15) Å
  • c = 10.602 (2) Å
  • α = 94.916 (15)°
  • β = 91.36 (1)°
  • γ = 94.451 (15)°
  • V = 504.95 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.980, T max = 0.997
  • 4612 measured reflections
  • 1955 independent reflections
  • 1039 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.183
  • S = 1.06
  • 1955 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810044351/bx2323sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810044351/bx2323Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by a Southeast University grant for Young Researchers (No. 4007041027).

supplementary crystallographic information

Comment

Schiff base compounds have attracted great attention due to their application in coordination chemistry (Garnovskii et al., 1993; Gong & Xu, 2008), and also offer a simple method of synthesis novel amine compounds. The title compound is synthesized from the Schiff base (E)-N-benzylidenepyridin-2-amine, and the crystal structure is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the benzene ring and pyridine ring is 67.63 (8)°. In the solid state the molecules are linked into centrosymmetric dimers by a simple N—H···N interaction with set graph-motif R22(8) (Bernstein et al., 1995), (Fig. 2; Table 1).

Experimental

The (E)-N-benzylidenepyridin-2-amine was prepared from benzaldehyde and pyridin-2-amine according to the reported method (Xu et al., 2009). To a mixture of (E)-N-benzylidenepyridin-2-amine (20 mmol), NaBH4 (100 mmol) in 1,4-dioxane (50 ml), acetic acid (100 mmol) in 1,4-dioxane was added dropwise at 0°C. Then the mixture was heated at 120°C for 2 h then cooled and the solvent removed under vacuum. The residue was poured into water (20 ml) and extracted with chloroform three times (50 ml). The extract was dried (CaCl2) and the solvent removed under vacuum to give the crude title compound. Pale yellow crystals suitable for X-ray analysis were obtained by slow evaporation of a 95% ethanol/water solution.

Refinement

All H atoms were detected in a difference map, but were placed in calculated positions and refined using a riding motion approxmation, with C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C); N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The diagram of the dimer linked by the intermolecular hydrogen bonds. The H atoms not involved in hydrogen bonds have been omitted for charity. Symmetry code: (a) -x + 1, -y, -z.

Crystal data

C12H12N2Z = 2
Mr = 184.24F(000) = 196
Triclinic, P1Dx = 1.212 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9233 (10) ÅCell parameters from 904 reflections
b = 8.0984 (15) Åθ = 2.5–27.4°
c = 10.602 (2) ŵ = 0.07 mm1
α = 94.916 (15)°T = 295 K
β = 91.36 (1)°Block, pale yellow
γ = 94.451 (15)°0.25 × 0.20 × 0.18 mm
V = 504.95 (16) Å3

Data collection

Rigaku SCXmini diffractometer1955 independent reflections
Radiation source: fine-focus sealed tube1039 reflections with I > 2σ(I)
graphiteRint = 0.062
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.1°
CCD profile fitting scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −9→9
Tmin = 0.980, Tmax = 0.997l = −13→13
4612 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0676P)2] where P = (Fo2 + 2Fc2)/3
1955 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4259 (5)0.1591 (3)0.1743 (3)0.0497 (7)
C20.3612 (5)0.2317 (4)0.2902 (3)0.0606 (9)
H20.23840.29660.29460.073*
C30.4814 (6)0.2060 (4)0.3978 (3)0.0729 (10)
H30.43990.25330.47600.087*
C40.6631 (6)0.1104 (4)0.3901 (3)0.0688 (9)
H40.74940.09400.46170.083*
C50.7120 (5)0.0399 (4)0.2725 (3)0.0616 (9)
H50.8323−0.02740.26670.074*
C60.1290 (5)0.2807 (4)0.0538 (3)0.0609 (9)
H6A0.16240.38740.10220.073*
H6B−0.00120.22450.09030.073*
C70.0728 (5)0.3080 (3)−0.0806 (3)0.0487 (7)
C80.2253 (5)0.3955 (4)−0.1514 (3)0.0616 (8)
H80.36530.4367−0.11550.074*
C90.1723 (6)0.4224 (4)−0.2746 (3)0.0702 (10)
H90.27630.4823−0.32100.084*
C10−0.0325 (6)0.3617 (4)−0.3297 (3)0.0712 (10)
H10−0.06700.3785−0.41350.085*
C11−0.1851 (6)0.2764 (4)−0.2600 (3)0.0686 (10)
H11−0.32570.2362−0.29580.082*
C12−0.1314 (5)0.2501 (4)−0.1371 (3)0.0587 (8)
H12−0.23670.1911−0.09100.070*
N10.3211 (4)0.1824 (3)0.0631 (2)0.0584 (7)
H1A0.37150.1364−0.00550.070*
N20.5982 (4)0.0617 (3)0.1662 (2)0.0553 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0601 (19)0.0431 (16)0.0460 (18)0.0067 (15)0.0030 (14)0.0010 (13)
C20.075 (2)0.0526 (19)0.055 (2)0.0143 (17)0.0093 (16)0.0009 (14)
C30.100 (3)0.071 (2)0.047 (2)0.012 (2)0.0090 (18)−0.0041 (15)
C40.082 (2)0.068 (2)0.055 (2)0.007 (2)−0.0131 (17)0.0029 (16)
C50.067 (2)0.060 (2)0.058 (2)0.0129 (17)−0.0012 (16)0.0041 (15)
C60.063 (2)0.060 (2)0.061 (2)0.0195 (17)0.0017 (15)0.0045 (15)
C70.0485 (18)0.0403 (16)0.0586 (19)0.0120 (14)0.0035 (14)0.0031 (13)
C80.0514 (19)0.059 (2)0.073 (2)0.0014 (16)0.0016 (16)0.0005 (16)
C90.077 (3)0.063 (2)0.071 (2)−0.0001 (19)0.0092 (19)0.0130 (17)
C100.085 (3)0.069 (2)0.061 (2)0.011 (2)−0.0070 (19)0.0054 (17)
C110.061 (2)0.071 (2)0.072 (2)0.0066 (19)−0.0091 (18)−0.0034 (18)
C120.054 (2)0.0490 (18)0.071 (2)−0.0012 (15)0.0063 (16)0.0000 (15)
N10.0655 (17)0.0619 (17)0.0499 (16)0.0249 (14)0.0036 (12)−0.0015 (11)
N20.0594 (16)0.0534 (15)0.0547 (16)0.0156 (13)0.0023 (12)0.0045 (11)

Geometric parameters (Å, °)

C1—N21.338 (3)C6—H6B0.9700
C1—N11.354 (3)C7—C121.368 (4)
C1—C21.391 (4)C7—C81.381 (4)
C2—C31.369 (4)C8—C91.376 (4)
C2—H20.9300C8—H80.9300
C3—C41.374 (4)C9—C101.370 (4)
C3—H30.9300C9—H90.9300
C4—C51.373 (4)C10—C111.365 (4)
C4—H40.9300C10—H100.9300
C5—N21.331 (3)C11—C121.372 (4)
C5—H50.9300C11—H110.9300
C6—N11.444 (3)C12—H120.9300
C6—C71.495 (4)N1—H1A0.8600
C6—H6A0.9700
N2—C1—N1115.7 (2)C12—C7—C6121.6 (3)
N2—C1—C2121.5 (3)C8—C7—C6120.7 (3)
N1—C1—C2122.7 (3)C9—C8—C7120.7 (3)
C3—C2—C1118.9 (3)C9—C8—H8119.7
C3—C2—H2120.5C7—C8—H8119.7
C1—C2—H2120.5C10—C9—C8120.6 (3)
C2—C3—C4120.0 (3)C10—C9—H9119.7
C2—C3—H3120.0C8—C9—H9119.7
C4—C3—H3120.0C11—C10—C9119.1 (3)
C5—C4—C3117.3 (3)C11—C10—H10120.4
C5—C4—H4121.3C9—C10—H10120.4
C3—C4—H4121.3C10—C11—C12120.0 (3)
N2—C5—C4124.2 (3)C10—C11—H11120.0
N2—C5—H5117.9C12—C11—H11120.0
C4—C5—H5117.9C7—C12—C11121.9 (3)
N1—C6—C7111.6 (2)C7—C12—H12119.1
N1—C6—H6A109.3C11—C12—H12119.1
C7—C6—H6A109.3C1—N1—C6123.4 (2)
N1—C6—H6B109.3C1—N1—H1A118.3
C7—C6—H6B109.3C6—N1—H1A118.3
H6A—C6—H6B108.0C5—N2—C1118.0 (3)
C12—C7—C8117.7 (3)
N2—C1—C2—C31.8 (4)C9—C10—C11—C12−1.0 (5)
N1—C1—C2—C3−177.8 (3)C8—C7—C12—C110.2 (4)
C1—C2—C3—C40.3 (5)C6—C7—C12—C11179.2 (3)
C2—C3—C4—C5−1.9 (5)C10—C11—C12—C70.4 (5)
C3—C4—C5—N21.6 (5)N2—C1—N1—C6178.6 (2)
N1—C6—C7—C12117.9 (3)C2—C1—N1—C6−1.7 (5)
N1—C6—C7—C8−63.1 (4)C7—C6—N1—C1170.6 (3)
C12—C7—C8—C9−0.2 (4)C4—C5—N2—C10.3 (5)
C6—C7—C8—C9−179.2 (3)N1—C1—N2—C5177.6 (3)
C7—C8—C9—C10−0.5 (5)C2—C1—N2—C5−2.0 (4)
C8—C9—C10—C111.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.263.070 (3)158

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2323).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Gong, X.-X. & Xu, H.-J. (2008). Acta Cryst. E64, o1188. [PMC free article] [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, J., Dai, C. & Nie, J. (2010). Acta Cryst. E66, o3076. [PMC free article] [PubMed]
  • Xu, H.-J., Tan, Q.-Y., Cui, L.-J. & Qian, K. (2009). Acta Cryst. E65, o945. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography